|Table of Contents|

Study on thermal control of HAN-based green monopropellant thruster(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年04期
Page:
38-45
Research Field:
研究与设计
Publishing date:

Info

Title:
Study on thermal control of HAN-based green monopropellant thruster
Author(s):
LIU Haiwa12HU Chengyun12YE Sheng12
(1.Shanghai Institute of Space Propulsion,Shanghai 201112,China; 2.Shanghai Engineering Research Center of Space Engine,Shanghai 201112,China)
Keywords:
HAN-based green monopropellant thruster thermal control
PACS:
V434
DOI:
-
Abstract:
In order to ensure HAN-based green monopropellant thruster working properly,high efficiency thermal design should be implemented that can maintain the temperature of catalyst bed above 200 ℃,which is higher in comparison with traditional monopropellant thruster. Taking the thruster as the research object,based on the thermal design,the finite element model of the thruster was built,and then the simulation using IDEAS/TMG was performed. In addition,vacuum thermal test was carried out,meanwhile the temperature of some important positions were obtained. It shows that except the temperature of the back part of front catalyst bed,temperature error of other monitoring points between thermal simulation and test are within 4 ℃,so the simulation results can agree well with test temperature data,the finite element model can be used in temperature prediction on orbit. The front catalyst bed of HAN-based green monopropellant thruster was equipped with a new type of wire heater and then covered with stainless steel foils,joined by hollowed bracket,which can meet the upper and lower limit temperature requirements.

References:

[1] 刘川,赵峰,刘俊. HAN基无毒单组元1N发动机设计研究[J]. 上海航天,2016,33(4): 32-37.
[2] 李小芳.无毒单组元发动机技术研究[J]. 上海航天,2001,18(3):26-35.
[3] ONODAKA S.Ignition characteristics of HAN liquid for gas-hybrid rockets[R].AIAA 2013-4051.
[4] KAKAMI A.One newton thruster by plasma-assisted combustion of HAN-based monopropellant[R].AIAA 2012-3756.
[5] PERSSON M,ANFLO K,DINARDI A,et al. A family of thrusters for ADN-based monopropellant LMP-103S[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta,Georgia. Reston,Virigina: AIAA,2012.
[6] 刘俊,刘川. 无毒单元发动机催化燃烧过程可视化试验研究[J]. 导弹与航天运载技术,2017(3): 45-48.
[7] 刘俊,潘一力,李伟,等. C/SiC复合材料在高能HAN发动机上应用研究[J]. 火箭推进,2017,43(5): 63-68.LIU J,PAN Y L,LI W,et al. Research on application of C/SiC composite in high-energy HAN-based thruster[J]. Journal of Rocket Propulsion,2017,43(5): 63-68.
[8] 杭观荣,洪鑫,康小录. 国外空间推进技术现状和发展趋势[J]. 火箭推进,2013,39(5): 7-15.HANG G R,HONG X,KANG X L. Current status and development trend of space propulsion technologies abroad[J]. Journal of Rocket Propulsion,2013,39(5): 7-15.
[9] MCLEAN C H,HALE M J,DEININGER W D.Green propellant infusion mission program overview[R].AIAA 2013-3847.
[10] DEININGER W D,ATTEBERRY J,BYGOTT K,et al.Implementation of the green propellant infusion mission(GPIM)on a ball aerospace BCP-100 spacecraft bus[R].AIAA 2013-3848.
[11] SPORES R A,MASSE R,KIMBREI S. GPIM AF-M315E propulsion system[R]. AIAA 2013-3849.
[12] MCLEAN C H,DEININGER W D,JONIATIS J. Green propellant infusion mission program development and technology maturation[R].AIAA 2014-348.
[13] YIM J T,REED B D. Green propellant infusion mission plume impingement analysis[R].AIAA 2013-3850.
[14] 鲍世国,公绪滨,陈艺,等. 一种HAN基单元推进剂及催化分解性能研究[J]. 火箭推进,2018,44(2): 39-45.BAO S G,GONG X B,CHEN Y,et al. Investigation of a novel HAN-based monopropellant and its catalytic decomposition performance[J]. Journal of Rocket Propulsion,2018,44(2): 39-45.
[15] 陈兴强,张志勇,滕奕刚,等. 可用于替代肼的2种绿色单组元液体推进剂HAN、ADN[J]. 化学推进剂与高分子材料,2011,9(4): 63-66.
[16] 吴靖,孙威,蔡国飙. 内加热式N2O单组元推力器预热过程仿真与试验[J]. 航空动力学报,2013,28(3): 556-560.
[17] 汪琼华,汤建华,洪鑫,等.小推力单元肼推力器温度场数值分析[J].火箭推进,2007,33(1):18-22.WANG Q H,TANG J H,HONG X,et al.Numerical investigation on low power monopropellant hydrazine thruster[J].Journal of Rocket Propulsion,2007,33(1):18-22.
[18] 孙威,方杰,张佳,等. N2O单组元推力器预热过程有限元分析[J]. 航空动力学报,2009,24(9): 2152-2156.
[19] 沈军,刘伟强,汤建华. 单组元发动机推力室在轨温度数值仿真[J]. 推进技术,2003,24(3): 201-203.
[20] DARYABEIGI K. Thermal analysis and design optimization of multilayer insulation for reentry aerodynamic heating[J]. Journal of Spacecraft and Rockets,2002,39(4): 509-514.
[21] 侯增祺,胡金刚. 航天器热控制技术:原理及其应用[M]. 北京: 中国科学技术出版社,2007.
[22] NESBITT J A. Thermal modeling of various thermal barrier coatings in a high heat flux rocket engine[J]. Surface and Coatings Technology,2000,130(2/3): 141-151.

Memo

Memo:
-
Last Update: 2020-07-30