|Table of Contents|

Design of spacecraft propulsion platform with main structure and tank bearing together(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年04期
Page:
67-73
Research Field:
研究与设计
Publishing date:

Info

Title:
Design of spacecraft propulsion platform with main structure and tank bearing together
Author(s):
CHEN JiaGU ChengzhangLIN RenbangLIU TaoZHAO XuechengCHEN Cheng
(Aerospace System Engineering Shanghai,Shanghai 201109,China)
Keywords:
bearing together propulsion platform tank variable stiffness optimal design
PACS:
V19
DOI:
-
Abstract:
The lightweight design of the spacecraft propulsion platform is crucial to improve the spacecraft mission efficiency and optimize the system performance.At present, the tank of the typical propulsion platform rarely participates in the load bearing, so an auxiliary bearing structure is used to transfer the tank load to the main structure, which reduces the bearing efficiency of the propulsion platform.For the lightweight design requirement of spacecraft, a propulsion platform with main structure and fuel tank bearing together is presented.The new developed surface tension tank is installed on the sidewall of the bearing cylinder by embedded installation, and the load level of the tank is controlled reasonably through the variable stiffness design of the bearing cylinder.Basis on the example of a satellite development, structural design parameters of the propulsion platform was optimized based on Nastran software, and simulation analysis and experimental verification were carried out.The research results show that the mechanical properties of propulsion platform with main structure and fuel tank bearing together is equivalent to that of a general propulsion platform, but the dry weight proportion of propulsion platform can be reduced to 13.6%, which can improve the system efficiency remarkably.The research results can be a reference for the propulsion platform design of large spacecraft.

References:

[1] 田娜,潘艳华.航天器轻量化设计初步研究[C]//中国宇航学会深空探测技术专业委员会第八届学术年会论文集.[S.l.]: 中国宇航学会深空探测技术专业委员会,2010.
[2] 王群, 王婧超, 李雄魁, 等.航天用轻质结构材料研究进展及应用需求[J].宇航材料工艺, 2017, 47(1): 1-4.
[3] 陈昌亚, 王德禹.集主承力结构与大容量储箱支架于一体的卫星主承力筒结构研究[J].空间科学学报, 2005, 25(2):149-153.
[4] 马昆, 郭武, 关嵩, 等.上面级发展现状及趋势分析[J].导弹与航天运载技术, 2013(6): 24-28.
[5] 方宝东, 陈昌亚, 王伟, 等.俄罗斯Fregat上面级[J].上海航天, 2012, 29(3): 34-37.
[6] AZIZ B,MARCEL B,MATTHIEU R.Implementation of a large multi-beam mission on Eurostar E3000 [C]//26th International Communications Satellite Systems Conference.Reston,VA: AIAA, 2008.
[7] 董瑶海.风云四号气象卫星及其应用展望[J].上海航天, 2016, 33(2): 1-8.
[8] 陈志坚, 邱中华.一种承力式表面张力贮箱[J].火箭推进, 2014, 40(1): 25-29.CHEN Z J, QIU Z H.Bearing surtace tension tank[J].Journal of Rocket Propulsion, 2014, 40(1): 25-29.
[9] LIONEL P,JEAN D G.SPACEBUS T M, a vehicle for broad missions[C]//24th International Communications Satellite Systems Conference.Reston,VA: AIAA,2006.
[10] 陈昌亚, 张驰, 顾亦磊, 等.储箱平铺多燃料卫星平台的主承力构架结构[J].上海航天, 2007, 24(1): 42-47.
[11] 李传吟, 曹俊生, 吴金花, 等.货运飞船推进模块双法兰连接设计研究[J].上海航天, 2016, 33(5): 36-41.
[12] 朱平萍, 刘宪力.大型贮箱结构及工艺性研究[J].航天制造技术, 2011(3): 42-45.
[13] 于康, 谢荣华, 陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进, 2015, 41(5): 89-94.YU K, XIE R H, CHEN X J.Study on electron beam welding process for surface tension tank[J].Journal of Rocket Propulsion, 2015, 41(5): 89-94.
[14] 王英杰, 杨卫鹏.表面张力贮箱电子束焊接工艺研究[J].火箭推进, 2016, 42(5): 82-87.WANG Y J, YANG W P.Research on electron-beam welding of surface tension tank[J].Journal of Rocket Propulsion, 2016, 42(5): 82-87.
[15] 魏延明.卫星用表面张力贮箱的设计、应用及其发展[J].控制工程, 2003, 29(2): 6-17.
[16] 李昂,陈晓岚.基于Patran的航天器力学分析平台的设计与实现[C]//第17届中国系统仿真技术及其应用学术年会论文集.[S.l.]: 中国系统仿真技术及其应用学术委员会,2016.
[17] 钱志英, 罗文波, 阮剑华.MSC.NASTRAN子结构法在航天器结构动力学分析中的应用[J].航天器工程, 2011, 20(5): 55-60.
[18] 崔高伟, 洪良友, 张冬梅.虚拟质量法在运载火箭模态分析中的应用[J].强度与环境, 2013, 40(5): 43-47.
[19] 林子钦, 许学强, 兰君辉, 等.基于虚拟质量法的部分充液且部分浸没圆柱壳自振特性分析[J].中国水运, 2018, 18(12): 156-157.
[20] VASILIEV V V,RAZINA F.Anisogrid conical adapters for commercial space application [C] //AIAA/CIRA 13th International Space Plane and Hypersonics Systems and Technology.Reston,VA: AIAA,2005.

Memo

Memo:
-
Last Update: 2020-07-30