|Table of Contents|

Data analysis of mechanical performance for all-position TIG joints of Ti tube(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年04期
Page:
97-102
Research Field:
工艺与材料
Publishing date:

Info

Title:
Data analysis of mechanical performance for all-position TIG joints of Ti tube
Author(s):
SONG Fan1TANG Lei2 YANG Weiguo1ZHOU Yuhao2 XU Xiaodan2
(1.Shanghai Institute of Space Propusion,Shanghai 201112,China; 2.Shanghai Engineering Research Center of Space Engine,Shanghai 201112,China )
Keywords:
Ti tube all-position TIG mechanical performance base metal fluctuation
PACS:
TG456.7
DOI:
-
Abstract:
In order to clarify the effect of the source and specification of process parts on the qualification rate of weld performance, the historical data of all-position TIG joints of Ti tube during recent 5 years and 44 batches were analyzed.When the production batches are different, the fluctuation of the tensile strength and impact toughness for the base metal can reach ±19.1% and ±38.1%, respectively.When the tubes are from the same batches but different roots, the fluctuations can reach ±6.2% and ±13.6%, respectively.The heat process of welding will reduce the average value of the performance and increase the fluctuation, and the impact toughness will change more obviously.When the outer diameter of the process part gradually increases, the average tensile strength of the base material is constant, while the average impact toughness gradually increases first and then decreases.After experiencing the same heat process of welding, only the impact toughness fluctuations of small-diameter weldments increase significantly.Two types of improvement suggestions are proposed.One is to limit the process parts to the same Ti tube,and the second is to change the qualification index of impact toughness from a fixed value to a serial values proportional to outer diameter.

References:

[1] 牛睿, 朱文山, 李利亮, 等.高分五号卫星姿轨控分系统设计[J].上海航天, 2019, 36(S2): 61-66.
[2] 周剑敏, 魏懿, 曹永梅, 等.高分三号卫星控制分系统设计与在轨验证[J].航天器工程, 2017, 26(6): 93-98.
[3] 刘万龙, 牛向楠, 李全令, 等.一种姿轨控发动机地面试验控制系统设计[J].火箭推进, 2015, 41(2): 114-117.LIU W L, NIU X N, LI Q L, et al.Design of a ground test control system for attitude and orbital control engine[J].Journal of Rocket Propulsion, 2015, 41(2): 114-117.
[4] 张彤, 刘婷, 王兵骁.高压管路快速连接件设计与应用[J].火箭推进, 2017, 43(4): 76-79.ZHANG T, LIU T, WANG B X.Design and application of a quick connector for high pressure pipe[J].Journal of Rocket Propulsion, 2017, 43(4): 76-79.
[5] 孙维平, 张宇轩, 何康康.姿轨控系统高压气路全焊接结构可行性研究[J].航天制造技术, 2017(2): 23-25.
[6] 黄哲云, 丁国忠, 马俊.钛合金导管的全位置氩弧焊工艺[J].上海航天, 1999, 16(6): 56-60.
[7] 张和平.钛合金薄壁导管钨极氩弧焊工艺[J].航天工艺, 1993(5): 28-30.
[8] 刘颖, 刘志富.TA16钛合金导管的自动钨极旋转氩弧焊[J].航空制造技术, 2009(10): 117-119.
[9] 宋建岭, 张晔, 黄逸飞, 等.小直径薄壁不锈钢导管全位置TIG焊数值模拟[J].焊接技术, 2018, 47(12): 47-51.
[10] 中国航天科技集团公司第六研究院七一〇三厂.导管焊接技术要求: QJ 2865A—2014[S].北京:国家国防科技工业局,2014.
[11] 王晓光.X射线检测小径管探伤中的应用分析[J].山东工业技术, 2018(19): 125.
[12] 吉楠, 蒋浩泽, 李为卫, 等.管道环焊缝射线检测缺陷容限标准分析[J].石油管材与仪器, 2018(6): 84-88.
[13] 刘国增.钛合金导管的涡流检测[J].火箭推进, 2011, 37(3): 48-51.LIU G Z.Eddy current testing of Ti alloy ducts[J].Journal of Rocket Propulsion, 2011, 37(3): 48-51.
[14] 黄嘉琥.高压厚壁钛管对接焊工艺与焊接接头的性能试验[J].压力容器, 1984, 1(3): 44-47.
[15] 王建武, 刘军生, 陈少斌.球面型管路连接件密封性能分析及力学性能测试[J].火箭推进, 2010, 36(6): 36-41.WANG J W, LIU J S, CHEN S B.Sealing performance analysis and mechanical property testing of spherical tube connector[J].Journal of Rocket Propulsion, 2010, 36(6): 36-41.
[16] 杜大华, 穆朋刚, 田川, 等.液体火箭发动机管路断裂失效分析及动力优化[J].火箭推进, 2018, 44(3): 16-22.DU D H, MU P G, TIAN C, et al.Failure analysis and dynamics optimization of pipeline for liquid rocket engine[J].Journal of Rocket Propulsion, 2018, 44(3): 16-22.
[17] 冯钊棠, 谢仕强, 苏腾太.ERW钢管焊缝冲击韧性影响要素分析[J].焊管, 2004, 27(5): 22-24.
[18] 茹成章, 王新虎.HFW石油套管焊缝冲击韧性影响因素分析[J].热处理技术与装备, 2010, 31(6): 33-36.
[19] 任毅, 陈连鹏.J55焊管韧性及其影响因素[J].鞍钢技术, 2003(4): 29-31.
[20] 宋健, 郑医, 徐磊, 等.不锈钢导管环焊的组织与性能[J].科技创新与应用, 2014(15): 108.

Memo

Memo:
-
Last Update: 2020-07-30