|Table of Contents|

Research on compressive properties of composite laminates by patching repair(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年04期
Page:
103-108
Research Field:
工艺与材料
Publishing date:

Info

Title:
Research on compressive properties of composite laminates by patching repair
Author(s):
ZHANG WanqingLI HongchunSHI Yong
(Xi’an Aerospace Propulsion Institute, Xi’an 710100, China)
Keywords:
composite laminate defect patching repair compression property
PACS:
V252
DOI:
-
Abstract:
The purpose is to study the influence of internal inclusion defect, middle fold defect and impact defect on the compressive properties of composite laminates, and the effect after repairing the three defects by the patching method.The method of artificially manufacturing internal inclusion defect, middle fold defect and impact defect on composite laminates, and repairing three defects by the patching method was applied.Finally, the compression properties of defective, repaired and non-defective samples were separately tested, and the micro-morphology of defective samples were observed by SEM to analyze their failure mechanism.The test shows that the impact defect has the largest impact on the compressive strength of the sample, followed by the internal inclusion defect, and the smallest impact on the compressive strength of the sample is the middle fold defect.The patching repair has significant effect for the middle fold defect and the internal inclusion defect, and the compression performance after patching repair reaches 102.9% and 110.1% of the compression performance of non-defective sample, respectively.However, the patching repair is not ideal for the impact defect, and the compression performance after pat-ching repair only reaches 67.9% of the compression performance of non-defective sample.

References:

[1] YI X S, DU S Y, ZHANG L T.Chinese material engineering ceremony(10): composite engineering[M].Beijng: Chemical Industry Press, 2006.
[2] 高禹, 李洋洋, 王柏臣, 等.先进树脂基复合材料在航空发动机上的应用及研究进展[J].航空制造技术, 2016(21): 16-21.
[3] 刘昌国, 邱金莲, 陈明亮.液体火箭发动机复合材料喷管延伸段研究进展[J].火箭推进, 2019, 45(4): 1-8.LIU C G, QIU J L, CHEN M L.Research progress of composites nozzle extension for liquid rocket engine[J].Journal of Rocket Propulsion, 2019, 45(4): 1-8.
[4] 张万卿, 李洪春, 马海瑞.碳纤维增强聚四氟乙烯材料微观结构[J].火箭推进, 2019, 45(2): 74-78.ZHANG W Q, LI H C, MA H R.Microstructure of carbon fiber-reinforced PTFE[J].Journal of Rocket Propulsion, 2019, 45(2): 74-78.
[5] 李芝华.碳纤维复合材料及其应用[J].工程塑料应用, 1998, 26(3): 12-14.
[6] 张凤翻.航空结构复合材料对碳纤维的需求[J].材料导报, 2000, 14(11): 5-7.
[7] 肖艳.复合材料的发展历程及其应用[J].建筑, 2009(24): 59-60.
[8] 黎小平, 张小平, 王红伟.碳纤维的发展及其应用现状[J].高科技纤维与应用, 2005, 30(5): 24-30.
[9] 文颖慧.纤维增强复合材料在航空工业中的运用[J].科学中国人, 2015(17): 44.
[10] 殷跃洪, 张江科, 习小斌, 等.通用飞机复合材料修补技术的研究[J].科学技术创新, 2019(21): 33-34.
[11] 蔺美杰.复合材料叶片修补技术研究[D].武汉: 武汉理工大学, 2011.
[12] 毕向军, 卢山, 段恒范, 等.一种碳纤维复合材料修补用环氧胶的性能研究[J].化学与黏合, 2018, 40(3): 216-218.
[13] 黄晓艳, 刘波.先进树脂基复合材料在巡航导弹与战机上的应用[J].飞航导弹, 2011(8): 87-92.
[14] 许占显, 孙占华.飞机复合材料结构的修补与无损评估[J].航空制造技术, 2003(12): 59-61.
[15] 陈域广, 张巍.直升机复合材料胶接修补方法研究[J].纤维复合材料, 2002, 19(3): 22-24.
[16] 曹莹, 吴林志, 张博明.碳纤维复合材料界面性能研究[J].复合材料学报, 2000, 17(2): 89-93.
[17] 田琳娜.碳纤维增强热塑性树脂基复合材料的成型工艺及力学性能研究[D].长春: 长春工业大学, 2012.
[18] 傅惠民, 杨雨松, 张勇波.含分层损伤国产碳纤维CCF300与T300碳纤维复合材料层合板压缩失效模式[J].航空动力学报, 2011, 26(11): 2416-2421.
[19] 林智育, 许希武.复合材料层板低速冲击后剩余压缩强度[J].复合材料学报, 2008, 25(1): 140-146.
[20] 翟青霞, 黄英, 苗璐, 等.树脂基复合吸波材料在航空、航天中的应用[J].玻璃钢/复合材料, 2009(6): 72-76.

Memo

Memo:
-
Last Update: 2020-07-30