|Table of Contents|

Dynamic response calculation and method of rocket engine turbine blades(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年06期
Page:
45-51
Research Field:
研究与设计
Publishing date:

Info

Title:
Dynamic response calculation and method of rocket engine turbine blades
Author(s):
REN ZhongXU KaifuZHU Donghua
(Xi'an Aerospace Propulsion Institute, Xi'an 710100, China)
Keywords:
reusable rocket engine impact turbine dynamic response theoretical model fluid-solid coupling simulation high cycle fatigue
PACS:
V434.21
DOI:
-
Abstract:
With the development of reusable rocket engines, the high cycle fatigue of turbine blades must be studied in depth. A theoretical model to calculate the dynamic response of partial admission turbine blades under the excitation force was proposed in this paper, and the vibration equation and solution method were established. Both theoretical method and fluid-solid coupling three-dimension simulation method were applied to an engine turbine blade. Compared to three-dimension simulation method, the average dynamic stress at blade root calculated by theoretical method is 3.39% lower, the response frequency is 1.62% higher and the maximum response amplitude is 11.4% lower. Thus, the accuracy of theoretical method is verified, and this method can be applied to the high cycle fatigue design of rocket turbine blades.

References:

[1] 朱宁昌.液体火箭发动机设计(上册)[M].北京: 宇航出版社,1994.
[2] 何泽夏,谭永华,孙秦,等.涡轮盘疲劳裂纹故障分析[J].机械强度,2003,25(5): 537-540.
[3] 李斌,王晓锋,陈本森,等.大叶顶间隙高效率火箭发动机涡轮设计[J].宇航学报,2009,30(2): 695-698.
[4] 毛凯,李昌奂,张聃,等.基于导叶端弯的小展弦比燃气涡轮优化设计[J].火箭推进,2019,45(6): 23-28. MAO K,LI C H,ZHANG D,et al.Optimization design of a low aspect ration gas turbine for curved guide vane[J].Journal of Rocket Propulsion,2019,45(6): 23-28.
[5] 任众,朱东华,许开富.多场环境下涡轮盘的强度与振动安全性仿真优化研究[J].火箭推进,2016,42(6): 36-42. REN Z,ZHU D H,XU K F.Multiphysics-based simulation and optimization on strength and vibration security of turbine disk[J].Journal of Rocket Propulsion,2016,42(6): 36-42.
[6] 谭宗立,管继伟.长叶片动应力计算及方法研究[J].汽轮机技术,2012,54(3): 183-186.
[7] KAN N.Blade stress estimation during multiple vibratory modes[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Reston,Virginia: AIAA,2013.
[8] YANG J B,JIANG L J,CHEN D C.Dynamic modelling and control of a rotating Euler–Bernoulli beam[J].Journal of Sound and Vibration,2004,274(3/4/5): 863-875.
[9] YOKOYAMA T.Free vibration characteristics of rotating Timoshenkobeams[J].International Journal of Mechanical Sciences,1988,30(10): 743-755.
[10] SINHA S K.Combined torsional-bending-axial dynamics of a twisted rotating cantilever Timoshenko beam with contact-impact loads at the free end[J].Journal of Applied Mechanics,Transactions ASME,2007,74(3): 505-522.
[11] 王梅,江和甫,吕文林.在尾流激振情况下叶片振动应力预估技术[J].航空动力学报,2007,22(4): 608-613.
[12] 王征,吴虎,史亚锋,等.基于CFD/CSD技术的压气机叶片流固耦合及颤振分析[J].航空动力学报,2011,26(5): 1077-1084.
[13] 张俊红,付曦,寇海军,等.流固耦合下轴流压气机叶片振动特性数值研究[J].振动·测试与诊断,2018,38(1): 59-66.
[14] 欧阳绍泽,沈达宽,陈群.叶轮机不均匀导向叶栅及其尾迹对转子叶片的激振研究[J].西北工业大学学报,1987,5(4): 401-407.
[15] 刘雄,李钢强,陈严,等.水平轴风力机叶片动态响应分析[J].机械工程学报,2010,46(12): 128-134.
[16] LEE D,HODGES D H,PATIL M J.Multi-flexible-body dynamic analysis of horizontal axis wind turbines[J].Wind Energy,2002,5(4): 281-300.
[17] 鲍文博,白泉,陆海燕.振动力学基础与MATLAB应用[M].北京: 清华大学出版社,2015.
[18] 胡海岩.机械振动基础 [M].北京: 北京航空航天大学出版社,2005.
[19] 吴艳红,韩广才.带有移动摆载荷柔性梁的动力学分析[J].哈尔滨工程大学学报,2011,32(5): 657-661.
[20] 吕文林.航空发动机强度计算[M].北京: 国防工业出版社,1988.

Memo

Memo:
-
Last Update: 1900-01-01