|Table of Contents|

Numerical simulation of partially cracked kerosene rotating detonation engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年06期
Page:
52-59,68
Research Field:
研究与设计
Publishing date:

Info

Title:
Numerical simulation of partially cracked kerosene rotating detonation engine
Author(s):
WANG DanZHOU ChenchuCHEN HongyuYAN YuHONG Liu
(Science and Technology on Liquid Propulsion Rocket Engine Laboratory, Xi'an Aerospace Propulsion Institute,Xi'an 710100,China)
Keywords:
rotating detonation engine pre-heating detonation combustion kerosene crack engine performance evaluation
PACS:
V231.2
DOI:
-
Abstract:
The rotary detonation engine using liquid kerosene as fuel has the advantages of simple structure, high performance and long-term storage of propellant, but it is difficult to initiate kerosene detonation. Taking the rotating detonation engine with kerosene-air as research object, the ignition process of a rotating detonation engine under pre-heating mode which leads to kerosene cracking was putted out. The chemical reaction model of partial cracking kerosene was putted out and the ignition process in the combustion chamber was simulated. The results show that the formation and development of detonation wave in the initial stage of ignition have uncertainty. The fuel components entering the combustion chamber have effect on the time required for building a stable detonation wave and the final propagation direction of the detonation wave. Increasing cracking rate of kerosene may result in slow combustion in the zone which will delay the formation of stable detonation waves. The frequency of the rotational detonation wave propagation is almost 7 500 Hz and peak pressure of detonation wave is almost 2.3 MPa under the condition of different cracking rates during the engine steady operation time. The specific impulse of engine varies slightly during different period and the average specific impulse is almost 1 340 m/s under the condition of different cracking rates.

References:

[1] 冯子轩,王爱峰,姚轩宇,等.爆震发动机研究进展[J].燃气涡轮试验与研究,2018,31(4): 46-52.
[2] 马虎,谢宗齐,邓利,等.旋转爆震发动机轴向脉冲爆震模态的实验研究[J].实验流体力学,2019,33(4): 33-38.
[3] 刘世杰,刘卫东,林志勇,等.连续旋转爆震波传播过程研究(Ⅰ): 同向传播模式[J].推进技术,2014,35(1): 138-144.
[4] 王健平,周蕊,武丹.连续旋转爆轰发动机的研究进展[J].实验流体力学,2015,29(4): 12-25.
[5] 李自然,林志勇,韩旭.超声速斜爆震发动机起爆过程研究综述[J].火箭推进,2013,39(3): 1-8. LI Z R,LIN Z Y,HAN X.Investigation for initiation process of supersonic oblique detonation engine[J].Journal of Rocket Propulsion,2013,39(3): 1-8.
[6] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F.Continuous spin detonations[J].Journal of Propulsion and Power,2006,22(6): 1204-1216.
[7] ST GEORGE A C,DRISCOLL R B,MUNDAY D E,et al.Development of a rotating detonation engine facility at the university of Cincinnati[C]//53rd AIAA Aerospace Sciences Meeting.Kissimmee,Florida.Reston,Virginia: AIAA,2015.
[8] DEBARMORE N D,KING P I,SCHAUER F R,et al.Nozzle guide vane integration into rotating detonation engine[R].AIAA 2013-1030.
[9] THEUERKAUF S,KING P,SCHAUER F,et al.Thermal management for a modular rotating detonation engine[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Reston,Virigina: AIAA,2013.
[10] WOLAGN'SKI P.Detonative propulsion[J].Proceedings of the Combustion Institute,2013,34(1): 125-158.
[11] NAPLES A,HOKE J,KARNESKY J,et al.Flowfield characterization of a rotating detonation engine[R].AIAA 2013-0278.
[12] PAPALEXANDRIS M V.A numerical study of wedge-induced detonations[J].Combustion and Flame,2000,120(4): 526-538.
[13] SCHWER D,KAILASANATH K.Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels[J].Proceedings of the Combustion Institute,2013,34(2): 1991-1998.
[14] ZHDAN S A,BYKOVSKII F A,VEDERNIKOV E F.Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture[J].Combustion,Explosion,and Shock Waves,2007,43(4): 449-459.
[15] HISHIDA M,FUJIWARA T,WOLANSKI P.Fundamentals of rotating detonations[J].Shock Waves,2009,19(1): 1-10.
[16] DAVIDENK O D M,KUDRYAVTSEV A N,GOKALP I.Numerical simulation of H2/O2 continuous spin detonation with a detailed chemical mechanism[C]//21st ICDERS.Poitiers,France:[s.n.],2007.
[17] EUDE Y,DAVIDENKO D M,GÖKALP I.Use of the adaptive mesh refinement for 3D simulations of a CDWRE(Continuous Detonation Wave Rocket Engine)[R].AIAA 2011-2236.
[18] 刘世杰.连续旋转爆震波结构、传播模态及自持机理研究[D].长沙: 国防科学技术大学,2012.
[19] 邵业涛,刘勐,王健平.圆柱坐标系下连续旋转爆轰发动机的数值模拟[J].推进技术,2009,30(6): 717-721.
[20] 马虎,武晓松,王栋,等.旋转爆震发动机数值研究[J].推进技术,2012,33(5): 820-825.
[21] 黄生洪,徐胜利,刘小勇.煤油超燃冲压发动机两相流场数值研究(Ⅲ):煤油在超燃流场中的多步化学反应特征[J].推进技术,2005,26(2): 101-105.
[22] 董刚,蒋勇,陈义良,等.大型气相化学动力学软件包CHEMKIN及其在燃烧中的应用[J].火灾科学,2000,9(1): 27-33.

Memo

Memo:
-
Last Update: 1900-01-01