[1] ROY G D,FROLOV S M,BORISOV A A,et al.Pulse detonation propulsion: challenges,current status,and future perspective[J].Progress in Energy and Combustion Science,2004,30(6):545-672.
[2] KUO K K.Principles of combustion[M].2nd ed.Hoboken,New Jersey:[s.n.],2005.
[3] HEISER W H,PRATT D T.Thermodynamic cycle analysis of pulse detonation engines[J].Journal of Propulsion and Power,2002,18(1):68-76.
[4] KAILASANATH K.Recent developments in the research on pulse detonation engines[J].AIAA Journal,2003,41(2):145-159.
[5] QIU H, XIONG C, FAN W.One—dimensional unsteady design method for pulsed detonation engine nozzles[J].Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2014,228(13):2496-2507.
[6] MILLER D N,CATT J A.Conceptual development of fixed—geometry nozzle using fluidic injection for throat area control[R].AIAA 1995-2603,1995.
[7] 王庆伟,刘波,王如根.二元喷管气动喉道控制的数值模拟[J].航空学报,2009,30(2):226-231.
[8] 郭飞飞,王如根,吴培根.二元收—扩喷管气动喉道控制数值模拟[J].航空动力学报,2014,29(10):2303-2310.
[9] 李坤,王如根,郭飞飞,等.二元喷管气动喉道控制性能的仿真研究[J].弹箭与制导学报,2015,35(3):103-106.
[10] LI L,HIROTA M,OUCHI K,et al.Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment[J].Shock Waves,2017,27(1):53-61.
[11] FERLAUTO M,MARSILIO R.Numerical investigation of the dynamic characteristics of a dual—throat—nozzle for fluidic thrust—vectoring[J].AIAA Journal,2017,55(1):86-98.
[12] BROPHY C,DAUSEN D,SMITH L,et al.Fluidic nozzles for pulse detonation combustors[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Nashville,Tennessee: AIAA,2012.
[13] SMITH L R.Fluidically augmented nozzles for pulse detonation engine applications[D].[S.l.]:Monterey California Naval Postgraduate School,2011.
[14] 郑华雷,邱华,熊姹,等.带二次流增推喷管的脉冲爆震发动机推进性能分析[J].推进技术,2014,35(7):1002-1008.
[15] 邱华,龚婷婷,熊姹,等.带二次流增推尾喷管的脉冲爆震发动机数值模拟研究[J].西北工业大学学报,2015,33(2):271-277.