|Table of Contents|

Effect of transient for velocity on nonlinear vibration characteristics of fuel pipe in attitude control engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年01期
Page:
55-61
Research Field:
研究与设计
Publishing date:

Info

Title:
Effect of transient for velocity on nonlinear vibration characteristics of fuel pipe in attitude control engine
Author(s):
HE Zhiyong1ZHANG Zhifeng2SONG Shaowei1
(1.Xi'an Aerospace Propulsion Institute, Xi'an 710100, China; 2. Key Laboratory for Highway Construction Technology and Equipment of Ministry of Education, Chang'an University, Xi'an 710064, China)
Keywords:
attitude control engine transient flow velocity fuel pipe nonlinear vibration
PACS:
V434.23
DOI:
-
Abstract:
In order to investigate the effect of transient flow velocity on nonlinear vibration characteristics of fuel pipeline in attitude control engine, a nonlinear liquid-solid coupling model of fuel pipe was developed and simulated by use of the weighted residuals method and the fourth-order Runge-Kutta method. The effect of the opening and closing time of the solenoid valve on the nonlinear vibration of fuel pipe was studied under different transient fuel flow rates. The results show that the pipeline vibration can be divided into stable vibration zone and unstable vibration zone according to the pipeline characteristic curve, and the unstable vibration is mainly manifested as divergent instability and distensibility instability. When the opening/closing time of solenoid valve locates in the instability region, the multi-frequency and variable amplitude expansion vibration of fuel pipeline will be induced by the transient flow velocity of fuel because of the sudden opening of the solenoid valve and the increased flow velocity of fuel is one of the mainfactor that results in the cracks of fuel pipeline. However, the single-frequency and variable amplitude expansion vibration of fuel pipeline is caused by the unstable vibration of the fuel pipeline due to the sudden closing of the solenoid valve.

References:

[1] 李彦江,张立圣,刘永寿,等.飞机燃油管路压力脉动分析[J].飞机设计,2009,29(5):37-42.
[2] 李晶,王康景,訚耀保,等.周期性脉动流体对飞机液压管路振动特性的影响[J].机床与液压,2014,42(11):5-8.
[3] 杜春阳,郁殿龙,温激鸿,等.含功能梯度材料的周期管路振动特性研究[J].振动与冲击,2018,37(4):170-176.
[4] 安晨亮,马金玉,王阔强.流体压力对液压管路流固耦合振动特性的影响研究[J].机电工程,2018,35(11):1152-1158.
[5] 孙欢.基于流固耦合的线性充液卡箍管路振动研究[J].舰船科学技术,2016,38(21):87-90.
[6] 包日东,金志浩,闻邦椿.分析一般支承输流管道的非线性动力学特性[J].振动与冲击,2008,27(7):87-90.
[7] 沈惠杰,温激鸿,郁殿龙,等.基于Timoshenko梁模型的周期充液管路弯曲振动带隙特性和传输特性[J].物理学报,2009,58(12):8357-8363.
[8] 林君哲,周恩涛,杜林森,等.流体参数对航空发动机液压管路振动特性的影响[J].东北大学学报(自然科学版),2012,33(10):1453-1456.
[9] 金基铎,宋志勇,杨晓东.两端固定输流管道的稳定性和参数共振[J].振动工程学报,2004,17(2):190-195.
[10] 魏杰立,张净玉,叶大海,等.基于图论的燃油管路稳态流动计算方法[J].航空动力学报,2017,32(10):2344-2354.
[11] 李占营,王建军,邱明星.航空发动机管路流固耦合振动的固有频率分析[J].航空发动机,2017,43(1):66-70.
[12] 郭庆,范启富.基于ANSYS的输流管道液固耦合有限元仿真[J].微型电脑应用,2010,26(4):9-11.
[13] 徐登伟,尤裕荣,袁洪滨,等.基于AMESim的先导膜片式电磁阀动态特性仿真[J].火箭推进,2017,43(4):41-45.
XU D W,YOU Y R,YUAN H B,et al.AMESim—based simulation analysis on dynamic characteristics of pilot—operated diaphragm solenoid valve[J].Journal of Rocket Propulsion,2017,43(4):41-45.
[14] SHAHBA A,ATTARNEJAD R,MARVI M T,et al.Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non—classical boundary conditions[J].Composites Part B: Engineering,2011,42(4):801-808.
[15] HANSSON P A,SANDBERG G.Dynamic finite element analysis of fluid—filled pipes[J].Computer Methods in Applied Mechanics and Engineering,2001,190(24/25):3111-3120.
[16] 彭先勇,李晨阳,李维嘉,等.载流管道振动数值仿真与实验测试[J].舰船科学技术,2011,33(11):17-21.
[17] 杨林涛,沈赤兵.基于AMESim的姿控发动机压力振荡传递特性研究[J].火箭推进,2019,45(3):26-32.
YANG L T,SHEN C B.Research on pressure oscillation transmission characteristics of attitude control engine based on AMESim[J].Journal of Rocket Propulsion,2019,45(3):26-32.

Memo

Memo:
-
Last Update: 2021-02-20