[1] ºÎ²©, ·áËɽ, ÄôÍòʤ. ÒºÌå»ð¼ý×ÔȼÍƽø¼Á»¯Ñ§×Å»ðÑÓ³ÙÊýֵģÄâ[J]. ϵͳ·ÂÕæѧ±¨, 2013, 25(4): 612-615. [2] ·ûÈ«¾ü. ÒºÌåÍƽø¼ÁµÄÏÖ×´¼°Î´À´·¢Õ¹Ç÷ÊÆ[J]. »ð¼ýÍƽø, 2004, 30(1): 1-6.FU Q J. Present situation and future development trend of liquid propellant [J]. Journal of Rocket Propulsion, 2004, 30(1): 1-6. [3] LIU Y, ZYBIN S V, GUO J Q, et al. Reactive dynamics study of hypergolic bipropellants: monomethylhydrazine and dinitrogen tetroxide[J]. The Journal of Physical Chemistry B, 2012, 116(48): 14136-14145. [4] ÄôÍòʤ, ׯ·ê³½. ×ÔȼÍƽø¼Á»ð¼ý·¢¶¯»úÎÈ̬ȼÉÕ¹ý³ÌµÄÊýֵģÄâ[J]. Íƽø¼¼Êõ, 1998, 19(5): 30-35. [5] ÄôÍòʤ, ׯ·ê³½, ×ÔȼÍƽø¼Á»ð¼ý·¢¶¯»úȼÉÕ²»Îȶ¨ÐÔÑо¿. Íƽø¼¼Êõ,2000,(04):64-66. [6] TANI H, DAIMON Y, SASAKI M, et al. Atomization and hypergolic reactions of impinging streams of monomethylhydrazine and dinitrogen tetroxide[J]. Combustion and Flame, 2017, 185: 142-151. [7] CATOIRE L, CHAUMEIX N, PAILLARD C. Chemical kinetic model for monomethylhydrazine/nitrogen tetroxide gas phase combustion and hypergolic ignition[J]. Journal of Propulsion and Power, 2004, 20(1): 87-92. [8] CATOIRE L, LUDWIG T, DUPRÿ?‚‡ G, et al. Kinetic modelling of the ignition delays in monomethylhydrazine/hydrogen/oxygen/argon gaseous mixtures[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1998, 212(6): 393-406. [9] CATOIRE L, SWIHART M T. Thermochemistry of species produced from monomethylhydrazine in propulsion and space-related applications[J]. Journal of Propulsion and Power, 2002, 18(6): 1242-1253. [10] °ÍÑÓÌÎ, ºîÁèÔÆ, ëÏþ·¼, µÈ. ¼×»ùëÂ/ËÄÑõ»¯¶þµª·´Ó¦»¯Ñ§¶¯Á¦Ñ§Ä£Ð͹¹½¨¼°·ÖÎö[J]. ÎïÀí»¯Ñ§Ñ§±¨, 2014, 30(6): 1042-1048. [11] Íõ´óÈñ, ³ÌÊ¥Çå, ÕÅéª. ÀûÓÃPP·¨¼ò»¯ÒºÌå×˹ì¿Ø·¢¶¯»ú»¯Ñ§·´Ó¦»úÀí[J]. »ð¼ýÍƽø, 2015, 41(5): 61-66.WANG D R, CHENG S Q, ZHANG N. Simplification for chemical reaction mechanism of liquid attitude and orbit control engine by PP method[J]. Journal of Rocket Propulsion, 2015, 41(5): 61-66. [12] SUN H Y, CATOIRE L, LAW C K. Thermal decomposition of monomethylhydrazine: Shock tube experiments and kinetic modeling[J]. International Journal of Chemical Kinetics, 2009, 41(3): 176-186 [13] SUN H, LAW C K. Thermochemical and kinetic analysis of the thermal decomposition of monomethylhydrazine: an elementary reaction mechanism[J]. The Journal of Physical Chemistry A, 2007, 111(19): 3748-3760 [14] LIU W G, WANG S Q, DASGUPTA S, et al. Experimental and quantum mechanics investigations of early reactions of monomethylhydrazine with mixtures of NO2 and N2O4[J]. Combustion and Flame, 2013, 160(5): 970-981. [15] KANNO N, TANI H, DAIMON Y, et al. Computational study of the rate coefficients for the reactions of NO2 with CH3NHNH, CH3NNH2, and CH2NHNH2[J]. The Journal of Physical Chemistry A, 2015, 119(28): 7659-7667. [16] KANNO N, TERASHIMA H, DAIMON Y U, et al. Theoretical study of the rate coefficients for CH3NHNH2+ NO2and related reactions[J]. International Journal of Chemical Kinetics, 2014, 46(8): 489-499. [17] ³ÂÕý. Õý¸ýÍ黯ѧ·´Ó¦»úÀíµÄ¼ò»¯Óë¼ÓËÙ¼ÆËã[J]. ¹¤³ÌÈÈÎïÀíѧ±¨, 2017, 38(7): 1392-1395. [18] ÇÇè¤, ÐìÃ÷ºñ, Ò¦ºé. »ùÓÚÃô¸ÐÐÔ·ÖÎöµÄ¼×Íé·´Ó¦»úÀíÓÅ»¯¼ò»¯[J]. »ªÖпƼ¼´óѧѧ±¨(×ÔÈ»¿Æѧ°æ), 2007, 35(5): 85-87. [19] STAGNI A, FRASSOLDATI A, CUOCI A, et al. Skeletal mechanism reduction through species-targeted sensitivity analysis[J]. Combustion and Flame, 2016, 163: 382-393. [20] HU H B, CHEN H Y, YAN Y, et al. Investigation of chemical kinetic model for hypergolic propellant of monomethylhydrazine and nitrogen tetroxide[J]. Journal of Energy Resources Technology, 2021, 143(6): 40-48. [21] KEE R J, RUPLEY F M, MILLER J A. CHEMKIN Release 4.1, Reaction Design[Z]. 2006. [22] AGOSTA V D, SEAMANS T F, VANPEE M. Development of a fundamental model of hypergolic ignition in space-ambient engines[J]. AIAA Journal, 1967, 5(9): 1616-1624.