|Table of Contents|

Integrated measurement and control systemfor X liquid rocket engine trial(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年03期
Page:
98-106
Research Field:
测控与试验
Publishing date:

Info

Title:
Integrated measurement and control systemfor X liquid rocket engine trial
Author(s):
SUN ChaoLI MengDONG Guochuang
Xi'an Aerospace Propulsion Institute,Xi'an 710100,China
Keywords:
liquid rocket engine trial integrated control system CAN bus CANopen protocol intelligent servo contorl
PACS:
V434.3
DOI:
-
Abstract:
In order to solve the problems of past liquid rocket engine trial system such as low bandwidth,low reliability and real-time performance,poor system maintainability and expansibility,a integrated measurement and control system was established,which is based on industrial control bus CAN bus and CANopen motion control sub-protocol in application layer the first time,and contraposing the past RS422 serial data bus's "peer-to-peer" structure disadvantages such as low data communication rate,low reliability,poor maintenance.A node scalable "one master many slave" mode data bus topology structure was established.This integrated control system was verified by X type liquid oxygen kerosene rocket engine trial to achieve high reliability,long distance,high real-time performance data communication and high precision servo control,and a complete CANopen motion control sub-protocol driver layer software was designed.Using this liquid rocket engine trial's integrated measurement and control system can achieve multi-mode and intelligent servo control in future engine measurement and control system,which provides a neoteric method for a new generation of liquid rocket engine intelligent contoller and control system research.

References:

[1] 刘瑞敏,卜玉,孙德,等.新一代运载火箭动力系统试车总体试验技术研究[J].火箭推进,2017,43(1): 72-77.LIU R M,BU Y,SUN D,et al.Research on overall test technology of power system for a new generation launch vehicle[J].Journal of Rocket Propulsion,2017,43(1): 72-77.
[2] 祝敏,张辉,雷震.分布式测控系统在发动机试验中的应用[J].火箭推进,2013,39(5): 98-102.ZHU M,ZHANG H,LEI Z.Application of distributed measurement and control system in liquid rocket engine test[J].Journal of Rocket Propulsion,2013,39(5): 98-102.
[3] 刘万龙,牛向楠,李全令,等.一种姿轨控发动机地面试验控制系统设计[J].火箭推进,2015,41(2): 114-117.LIU W L,NIU X N,LI Q L,et al.Design of a ground test control system for attitude and orbital control engine[J].Journal of Rocket Propulsion,2015,41(2): 114-117.
[4] 白蒲江,王建军.一种基于CAN通讯的测控系统设计[J].汽车实用技术,2020,45(18): 41-43.
[5] 程鲲鹏,杨杰,刘新辉,等.基于CAN总线的多通道开度阀控制系统的设计[J].机械与电子,2020,38(9): 65-68.
[6] HOLGER Z.现场总线CANopen设计与应用[M].周立功,黄晓清,严寒亮,译.北京: 北京航空航天大学出版社,2011.
[7] 夏勇,叶晓东,赵江海.基于CANopen协议的数字伺服控制[J].电气自动化,2014,36(1): 57-59.
[8] 徐喆,闫士珍,宋威.基于散列表的CANopen对象字典的设计[J].计算机工程,2009,35(8): 44-46.
[9] DUAN J M,XIAO J J,ZHANG M J.Framework of CANopen protocol for a hybrid electric vehicle[C]//2007 IEEE Intelligent Vehicles Symposium.Istanbul,Turkey:IEEE,2007.
[10] BOTERENBROOD H.CANopen high-level protocol for CAN-bus[Z].NIKHEF Internal Documentation NIKHEF Amsterdam Version,2000,3: 1-23.
[11] 卢雁.多机通信在自动控制系统中的应用[J].电子质量,2020(7): 69-72.
[12] 汤雨雷.多电机同步控制系统研究与设计[D].西安: 西安工业大学,2019.
[13] 马维华.电推进飞行器的多舵机控制系统设计与研究[D].上海: 上海应用技术大学,2019.
[14] 杨弘枨,刘山,焦玮玮,等.智能控制在航天推力矢量伺服系统中的应用及展望[J].航天控制,2020,38(3): 3-9.
[15] 吴宇.基于智能PID的交流伺服电机控制研究[D].大连: 大连交通大学,2016.
[16] 樊垚,李亮,祁鹏,等.基于特征模型的火箭发动机伺服控制系统设计[J].固体火箭技术,2015,38(1): 145-150.
[17] 曾武.CANopen协议在伺服控制系统中的应用研究[D].湘潭: 湘潭大学,2014.
[18] 吴爱国,刘莉.CAN总线控制系统的应用层协议CANopen剖析[J].微计算机信息,2003,19(3): 27-28.
[19] 王愈凌.基于CANopen通信的变频器控制系统设计[J].机电信息,2019(36): 161-162.
[20] 邢月华,付磊,赵海院.基于CANopen协议的网络控制系统研究与开发[J].铁道机车车辆,2019,39(6): 54-57.
[21] 徐征辉,刘凤秋,张梦博.基于STM32的CANopen协议的实现[D].哈尔滨:哈尔滨工业大学,2012.
[22] 刘思捷.CANopen协议在伺服系统中的软件实现与植入研究[D].武汉: 华中科技大学,2011.
[23] 罗峰,孙泽昌.汽车CAN总线系统原理、设计与应用[M].北京: 电子工业出版社,2010.
[24] 史久根,张培仁,陈真勇.CAN现场总线系统设计技术[M].北京: 国防工业出版社,2004.
[25] 杨明,于泳.最重要的BLDCM位置检测方法[J].交流永磁同步伺服系统,2004,11(12):33-37.

Memo

Memo:
-
Last Update: 1900-01-01