|Table of Contents|

Virtual thermal vacuum test technology of liquid-propellant rocket engine components(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年04期
Page:
64-70
Research Field:
研究与设计
Publishing date:

Info

Title:
Virtual thermal vacuum test technology of liquid-propellant rocket engine components
Author(s):
ZHANG WeijingLIU ZhanyiLIU JiwuSHI XiaoboHU JinhuaCHENG Yawei
(Science and Technology on Liquid Rocket Engine Laboratory,Xian Aerospace Propulsion Institute,Xian 710100,China)
Keywords:
liquid-propellant rocket engine virtual test optical tracking method radiation heat-transfer
PACS:
V434.3
DOI:
-
Abstract:
Compared to the real thermal vacuum test,the virtual thermal vacuum test is able to reduce cost and time effectively during the product development.The investigation on virtual thermal vacuum test for liquid-propellant rocket engine components is carried out, and the virtual thermal vacuum environment test platform,which consists of vacuum chamber,heat sink,quartz lamp array and liquid-propellant rocket engine components,is built up based on the Sinda-fluint thermal analysis software.There is a great deal of surface-to-surface radiation heat-transfer in the virtual test,which is bound to consume massive computing resource.This problem is processed based on Monte Carlo optical tracking method.As to the quartz lamp array,its heat source characteristics are analyzed,and it is simplified as a high temperature plate.A proof test is carried out and the results show the accuracy of the model.Finally,taking a flow adjuster of a liquid-propellant rocket engine as an example,both the actual and the virtual thermal vacuum experiments are carried out simultaneously.According to the temperature variation during the whole test,the maximum temperature variation between the virtual test and the experimental results is less than 10% during the whole test process,which verifies the effectiveness of the virtual test platform.

References:

[1] 刘锋,金恂叔.论航天器的热试验[J].中国空间科学技术,1999,19(6):33-39.
[2] 黄本诚,马有礼.航天器空间环境试验技术[M].北京:国防工业出版社,2002.
[3] 黄本诚,童靖宇.空间环境工程学[M].北京:中国科学技术出版社,2010.
[4] 陈志,汪杰君,胡亚东,等.星载多型号光电探测器热真空环境试验研究[J].红外技术,2020,42(9):823-828.
[5] 尹本浩,冷国俊,刘芬芬.涂层及材质对大功率天线热真空试验的影响[J].电子机械工程,2019,35(6):12-16.
[6] RABELO L.The virtual test bed project[C]//NASA/ASEE Summer Faculty Fellow ship Program.Florida:Kennedy Space Center,2002.
[7] 曹志松,刘绍然,裴一飞.卫星虚拟热试验平台建模工具模块研究[J].航天器环境工程,2012,29(1):42-45.
[8] 巨亚堂.结构热强度虚拟试验平台技术研究[J].强度与环境,2008,35(3):1-6.
[9] 何西波,王则力,王智勇.虚拟试验技术在结构热试验中的应用[J].强度与环境,2016,43(1):60-64.
[10] 李涛,周丽萍.数值仿真技术在热真空试验中的应用[J].空间电子技术,2014,11(4):90-93.
[11] 纪欣言,裴一飞,刘国青,等.航天器真空热试验用加热板的数值仿真[J].航天器环境工程,2010,27(5):607-610.
[12] 仇善昌,钱婧.数字式太阳敏感器热真空试验温度场仿真研究[J].科学技术与工程,2010,10(10):2434-2437.
[13] 史亚男.喷管羽流对捆绑式运载火箭底部热环境的影响研究[D].北京:北京理工大学,2016.
[14] 张忠利.姿控发动机热防护研究[J].火箭推进,2008,34(3):17-22. ZHANG Z L.Investigation on thermal protection for attitude correction liquid rocket engine[J].Journal of Rocket Propulsion,2008,34(3):17-22.
[15] 谈和平,夏新林.红外辐射特性与传输的数值计算:计算热辐射学[M].哈尔滨:哈尔滨工业大学,2006.
[16] TURNER T L,ASH R L.Numerical and experimental analyses of the radiant heat flux produced by quartz heating systems[EB/OL].https://adsabs.harvard.edu/abs/1994near.rept....T/abstract,1994.
[17] 杨世铭.传热学基础[M].2版.北京:高等教育出版社,2003.
[18] 刘占一,许婷,张魏静,等.热防护材料表面发射率测试研究[J].火箭推进,2019,45(4):79-84. LIU Z Y,XU T,ZHANG W J,et al.Measurement study on surface emissivity of thermal protection material[J].Journal of Rocket Propulsion,2019,45(4):79-84.
[19] 闵桂荣,郭舜.航天器热控制[M].北京:科学出版社,1998.
[20] 侯增祺.航天器热控制技术-原理及其应用[M].北京:科学出版社,2007.

Memo

Memo:
-
Last Update: 1900-01-01