|Table of Contents|

Effects of the number of fuel injection orifices on rotating detonation initiation process under non-premixed conditions(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年05期
Page:
22-34
Research Field:
研究与设计
Publishing date:

Info

Title:
Effects of the number of fuel injection orifices on rotating detonation initiation process under non-premixed conditions
Author(s):
JIAO Zhongtian12WANG Yongjia2LI Wei1ZHU Yiyuan1WANG Ke1FAN Wei1
(1. School of Power and Energy,Northwestern Polytechnical University,Xian 710129, China 2.Science and Technology on Liquid Rocket Engine Laboratory,Xian Aerospace Propulsion Institute,Xian 710100, China)
Keywords:
rotating detonation non-premixed injection injection orifice number numerical simulation propagation mode
PACS:
V231.2
DOI:
-
Abstract:
Slot-orifice injection scheme is now commonly used in rotating detonations. The influence of the number of fuel injection orifices(60,90,120,150)on rotating detonations inside an annular combustor were investigated numerically including the mixing process,the detonation initiation process and the detonation propagation process. For a total mass flow rate of 206 g/s,stable rotating detonation waves can be obtained when 60 and 90 orifices were used,while rotating detonation fails to be produced when 120 and 150 orifices were used. Multi-waves appeared in the 60 orifices configuration which finally transits into a stable dual-wave mode. When the total mass flow rate decreased to 103 g/s,stable detonation wave was able to be formed in the 120 and 150 orifices configurations. The results indicate that the mixing process of the same injection configuration will be affected by the mass flow rate,which has a great impact on the detonation initiation. If distribution of H2 in axialand radial directions is more uniform,the detonation initiation becomes easier. It is also observed that the detonation wave number increases with the mass flow rate. Moreover,a more uniform distribution of H2 in the circumferential direction will lead to a faster detonation velocity,and a highest velocity of 1 827 m/s has been obtained.

References:

[1] 刘世杰,林志勇,覃慧,等.连续旋转爆震波发动机研究进展[J].飞航导弹,2010(2):70-75. [2] 严传俊,范玮.脉冲爆震发动机原理及关键技术[M].西安:西北工业大学出版社,2005. [3] KINDRACKI J,WOLANSKI P,GUT Z.Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures[J].Shock Waves,2011,21(2):75-84. [4] VOITSEKHOVSKII B V.Maintained detonations [J].Doklady Akademii Nauk UzSSR,1959,129(6):1254-1256. [5] VOITSEKHOVSKII B V.Spinning maintained detonations[J].Prikl Mekh Tekh Fiz,1960(3):157-164. [6] NICHOLLS J A,CULLEN R E.The feasibility of a rotating detonation wave rocket motor[R].RPL-TDR-64-113,1964. [7] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F.Continuous spin detonations[J].Journal of Propulsion and Power,2006,22(6):1204-1216. [8] ZHDAN S A,BYKOVSKII F A,VEDERNIKOV E F.Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture[J].Combustion,Explosion,and Shock Waves,2007,43(4):449-459. [9] SCHWER D,KAILASANATH K.Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels[J].Proceedings of the Combustion Institute,2013,34(2):1991-1998. [10] LU F,BRAUN E,MASSA L,et al.Rotating detonation wave propulsion:experimental challenges,modeling,and engine concepts(invited)[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.31 July 2011-03 August 2011,San Diego,California.Reston,Virginia:AIAA,2011:6043. [11] STECHMANN D P,HEISTER S D.Development and testing of a high-pressure rotating detonation engine for rocketapplications[C]//54th AIAA Aerospace Sciences Meeting.4-8 January 2016,San Diego,California,USA.Reston,Virginia:AIAA,2016:1201. [12] STECHMANN D P,HEISTER S D,HARROUN A J.Rotating detonation engine performance model for rocket applications[J].Journal of Spacecraft and Rockets,2018,56(3):887-898. [13] 严宇,胡洪波,洪流,等.自燃推进剂旋转爆震燃烧实验研究[J].推进技术,2018,39(9):1986-1993. [14] 王朝晖,孔维鹏,王仙,等.富氢燃气与液氧爆轰及补燃特性试验研究[J].火箭推进,2019,45(6):10-16.WANG Z H,KONG W P,WANG X,et al.Experimental study on the detonation and spontaneous combustion characteristics of hydrogen-rich gas and liquid oxygen[J].Journal of Rocket Propulsion,2019,45(6):10-16. [15] 胡洪波,严宇,张锋,等.煤油富燃燃气旋转爆震燃烧实验研究[J].推进技术,2020,41(4):881-888. [16] FUJIWARA T,HISHIDA M,KINDRACKI J,et al.Stabilization of detonation for any incoming Mach numbers[J].Combustion,Explosion,and Shock Waves,2009,45(5):603-605. [17] TSUBOI N,HAYASHI A K.Numerical study on spinning detonations[J].Proceedings of the Combustion Institute,2007,31(2):2389-2396. [18] SCHWER D,KAILASANATH K.Effect of inlet on fill region and performance of rotating detonation engines[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.San Diego,California.Reston,Virginia:AIAA,2011. [19] SCHWER D,KAILASANATH K.Feedback into mixture plenums in rotating detonation engines[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Nashville,Tennessee.Reston,Virginia:AIAA,2012. [20] LIU M,ZHOU R,WANG J P.Numerical investigation of different injection patterns in rotating detonation engines[J].Combustion Science and Technology,2015,187(3):343-361. [21] 刘世杰,林志勇,林伟,等.H2/Air连续旋转爆震波的起爆及传播过程试验[J].推进技术,2012,33(3):483-489. [22] 王超,刘卫东,刘世杰,等.吸气式连续旋转爆震与来流相互作用[J].航空学报,2016,37(5):1411-1418. [23] WANG Z C,WANG K,LI Q G,et al.Effects of the combustor width on propagation characteristics of rotating detonation waves[J].Aerospace Science and Technology,2020,105:106038. [24] YAO S B,TANG X M,LUAN M Y,et al.Numerical study of hollow rotating detonation engine with different fuel injection area ratios[J].Proceedings of the Combustion Institute,2017,36(2):2649-2655. [25] SUN J,ZHOU J,LIU S J,et al.Effects of injection nozzle exit width on rotating detonation engine[J].Acta Astronautica,2017,140:388-401. [26] 周胜兵,王栋,马虎,等.氧化剂喷注面积对旋转爆震波传播特性影响的实验研究[J].推进技术,2017,38(11):2634-2640. [27] MENG Q Y,ZHAO N B,ZHENG H T,et al.Numerical investigation of the effect of inlet mass flow rates on H2/air non-premixed rotating detonation wave[J].International Journal of Hydrogen Energy,2018,43(29):13618-13631.

Memo

Memo:
-
Last Update: 1900-01-01