[1] 林庆国,王浩明,程诚.基于氢化镁的核电/核热双模共质空间核动力技术[J].上海航天,2019,36(6):114-120. [2] 陈杰,高劭伦,夏陈超,等.空间堆核动力技术选择研究[J].上海航天,2019,36(6):1-10. [3] EL-GENK M S,GALLO B M.High-power brayton rotating unit for reactor and solar dynamic power systems[J].Journal of Propulsion and Power,2010,26(1):167-176. [4] MASON L S.A power conversion concept for the Jupiter icy moons orbiter[J].Journal of Propulsion and Power,2004,20(5):902-910. [5] 朱安文,刘磊,马世俊,等.空间核动力在深空探测中的应用及发展综述[J].深空探测学报,2017,4(5):397-404. [6] JANSEN F,GRUNDMANN J T,MAIWALD V,et al.High-power electric propulsion:mars plus Europa-already beyond 2025[C]// 36th International Electric Propulsion Conference.Austria:University of Vienna,2019. [7] KOROTEEV A S,KAREVSKIY A V,LOVTSOV A S,et al.Study of operation of power and propulsion system based on closed Brayton cycle power conversion unit and electric propulsion[C]// 36th International Electric Propulsion Conference.Austria:University of Vienna,2019. [8] JOHNSON P K,MASON L S.Initial test results of a dual closed-brayton-cycle power conversion system[EB/OL].(2013-8-24)[2021-5-10].https://ntrs.nasa.gov/citations/20080006649. [9] BARNETT J W.Nuclear electric propulsion technologies:overview of the NASA/DOE/DOD nuclear electric propulsion workshop[J].AIP Conference Proceedings,1991,217(2):511-523. [10] MARCHIONNI M,BIANCHI G,TASSOU S A.Transient analysis and control of a heat to power conversion unit based on a simple regenerative supercritical CO2 Joule-Brayton cycle[J].Applied Thermal Engineering,2021,183:116214. [11] MASON L S,SCHREIBER J G.A historical review of brayton and stirling power conversion technologies for space applications[C]//Space Nuclear Conference 2007-Proceedings of Embedded Topical Meeting.[S.l.]:SNC,2007. [12] BIONDI A,TORO C.Closed Brayton cycles for power generation in space:modeling,simulation and exergy analysis[J].Energy,2019,181:793-802. [13] 郭凯伦,王成龙,秋穗正,等.兆瓦级核电推进系统布雷顿循环热电转换特性分析[J].原子能科学技术,2019,53(1):16-23. [14] 冯致远,张昊春,吉宇,等.航天器核动力推进系统热力学性能研究[J].载人航天,2016,22(6):797-804. [15] 郑开云.超临界二氧化碳布雷顿循环效率分析[J].发电设备,2017,31(5):305-309. [16] LIU H Q,CHI Z R,ZANG S S.Optimization of a closed Brayton cycle for space power systems[J].Applied Thermal Engineering,2020,179:115611. [17] HU H M,GUO C H,CAI H F,et al.Dynamic characteristics of the recuperator thermal performance in a S-CO2 Brayton cycle[J].Energy,2021,214:119017. [18] ZHAO H,DENG Q H,HUANG W T,et al.Thermodynamic and economic analysis and multi-objective optimization of supercritical CO2 brayton cycles[J].Journal of Engineering for Gas Turbines and Power,2016,138(8):081602. [19] 刘学峥.氦氙工质离心压气机气动设计及流动特性研究[D].哈尔滨:哈尔滨工程大学,2019. [20] 宋怀乐,秦政,杨康.基于二氧化碳工质的向心透平气动性能研究[J].热力透平,2019,48(3):205-208. [21] 王浩明,薛翔,张银勇,等.空间闭式布雷顿循环旁路调节特性分析[J].火箭推进,2021,47(2):61-67.WANG H M, XUE X, ZHANG Y Y, et al. Analysis of bypass regulation characteristics for space closed Brayton cycle system[J]. Journal of Rocket Propulsion, 2021(2):61-67.