|Table of Contents|

Analysis on combustion stability of thrust chamber in high pressure hydrogen-oxygen rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年02期
Page:
66-75
Research Field:
目次
Publishing date:

Info

Title:
Analysis on combustion stability of thrust chamber in high pressure hydrogen-oxygen rocket engine
Author(s):
LIU Qian1LI Jingxuan2SUN Jiguo1LIANG Xuanye2XIANG Xiaolin2PAN Liang1ZHENG Mengwei1
(1.Beijing Aerospace Propulsion Institute, Beijing 100076, China 2.School of Astronautics, Beihang University, Beijing 100191, China)
Keywords:
high pressure hydrogen-oxygen rocket engine thrust chamber combustion stability numerical simulation flame transfer function
PACS:
V430
DOI:
-
Abstract:
Aiming at the structural scheme of the thrust chamber without baffle nozzle and acoustic cavity in high-pressure hydrogen-oxygen rocket engine, the combustion stability of the combustion chamber under different injection parameters and structural parameters was analyzed by using the method of decoupling of unsteady combustion and acoustic system.The unsteady Reynolds-averaged NS equation(URANS)was used to calculate the unsteady combustion process of the shear coaxial injector and obtain the flame transfer function, and the Soave Redlich Kwong(SRK)state equation was used to obtain density and so on. Considering that the flame length of the shear coaxial injector was equivalent to the magnitude of the sound wave, the distributed flame structure was used for modeling the flame transfer function.The combustion chamber acoustic modes loaded with the nozzle flame transfer function were calculated by COMSOL, and the combustion instability was predicted by combining the calculated mode frequencies and their growth rates.The results showed that the predicted combustion stability of the chamber was stable under different gas/oxygen injection velocity ratio, mixing ratio, relative nozzle pressure drop, retraction depth ratio and per-injection temperature under given operating conditions.In the thrust chamber design, it is beneficial to improve the combustion stability by increasing the gas/oxygen injection velocity ratio or reducing the mixing ratio in the combustion chamber.The work provides a reference for the design of injector in high-pressure hydrogen-oxygen rocket engine and the combustion stability evaluation.

References:

[1] 丁兆波, 孙纪国, 路晓红.国外典型大推力氢氧发动机推力室技术方案综述[J].导弹与航天运载技术, 2012(4):27-30.
[2] 郑孟伟, 岳文龙, 孙纪国, 等.我国大推力氢氧发动机发展思考[J].宇航总体技术, 2019, 3(2):12-17.
[3] 丁兆波, 许晓勇, 乔桂玉, 等.氢氧火箭发动机动态燃烧稳定性评定技术研究[J].导弹与航天运载技术, 2013(1):38-41.
[4] 田原, 李丹琳, 孙纪国, 等.同轴剪切喷嘴高频喷注耦合燃烧不稳定分析[J].火箭推进, 2014, 40(3):23-28.TIAN Y, LI D L, SUN J G, et al.Instability analysis on high-frequency injection-coupled combustion of shear coaxial injector[J].Journal of Rocket Propulsion, 2014, 40(3):23-28.
[5] BAI X,LI Q L,CHENG P,et al.Flame oscillation characteristics for liquid-centered swirl coaxial injectors[J].Journal of Propulsion Technology, 2021, 42(7):1593-1605.
[6] CAO P J, BAI X, LI Q L, et al.Experimental study on the unsteady spray combustion process of a liquid oxygen/methane swirl coaxial injector[J].ACS Omega, 2021, 6(40):26191-26200.
[7] 杨V, 安德松W E.液体火箭发动机燃烧不稳定性[M].张宝炯,译.北京:科学出版社, 2001.
[8] DENNIS H, HUTT J, NESMAN T.Stability testing of a modified Space Shuttle Main Engine[C]//27th Joint Propulsion Conference.Reston, Virginia:AIAA, 1991.
[9] FEILER C E, MORGAN C J, WANHAINEN J P.Effect of chamber pressure, flow per element, and contraction ratio on acoustic-mode instability in hydrogen-oxygen rockets[R].NASA TN D-4733, 1968.
[10] GR?ING S, HARDI J, SUSLOV D, et al.Influence of hydrogen temperature on the stability of a rocket engine combustor operated with hydrogen and oxygen[J].CEAS Space Journal, 2017, 9(1):59-76.
[11] 丁兆波, 刘倩, 王天泰, 等.220 t级补燃循环氢氧发动机推力室研制[J].火箭推进, 2021, 47(4):13-21.
DING Z B, LIU Q, WANG T T, et al.Development for thrust chamber of 220 t staged combustion cycle LOX/LH2 engine[J].Journal of Rocket Propulsion, 2021, 47(4):13-21.
[12] GICQUEL L Y M, STAFFELBACH G, POINSOT T.Large eddy simulations of gaseous flames in gas turbine combustion chambers[J].Progress in Energy and Combustion Science, 2012, 38(6):782-817.
[13] SELLE L, LARTIGUE G, POINSOT T, et al.Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes[J].Combustion and Flame, 2004, 137(4):489-505.
[14] STAFFELBACH G, GICQUEL L Y M, BOUDIER G, et al.Large Eddy Simulation of self excited azimuthal modes in annular combustors[J].Proceedings of the Combustion Institute, 2009, 32(2):2909-2916.
[15] URBANO A, SELLE L, STAFFELBACH G, et al.Exploration of combustion instability triggering using Large Eddy Simulation of a multiple injector liquid rocket engine[J].Combustion and Flame, 2016, 169:129-140.
[16] GR?ING S, HARDI J S, SUSLOV D, et al.Injector-driven combustion instabilities in a hydrogen/oxygen rocket combustor[J].Journal of Propulsion and Power, 2016, 32(3):560-573.
[17] 尕永婧, 张会强, 王希麟.雾化角对液体火箭发动机燃烧室压力振荡的影响[J].工程热物理学报, 2012, 33(5):883-886.
[18] HAN X S, LI J X, MORGANS A S. Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model[J]. Combustion and Flame, 2015, 162(10): 3632-3647.
[19] LI J X, XIA Y, MORGANS A S, et al. Numerical prediction of combustion instability limit cycle oscillations for a combustor with a long flame[J]. Combustion and Flame, 2017,185: 28-43.
[20] DURAN I, MOREAU S. Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion[J]. Journal of Fluid Mechanics, 2013, 723: 190-231.
[21] LAERA D, SCHULLER T, PRIEUR K, et al. Flame describing function analysis of spinning and standing modes in an annular combustor and comparison with experiments[J]. Combustion and Flame, 2017, 184: 136-152.

Memo

Memo:
-
Last Update: 1900-01-01