|Table of Contents|

Dynamic characteristics simulation and analysis for the flexible rotor of an ultrahigh speed hydrogen turbopump(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年02期
Page:
86-93
Research Field:
目次
Publishing date:

Info

Title:
Dynamic characteristics simulation and analysis for the flexible rotor of an ultrahigh speed hydrogen turbopump
Author(s):
DU JialeiWANG YixuanLI MingJIANG XuqiangCHU Baoxin
(Beijing Aerospace Propulsion Institute, Beijing 100076, China)
Keywords:
hydrogen turbopump flexible rotor rotor dynamics critical speed stability
PACS:
V434.1
DOI:
-
Abstract:
This paper concerns the design of rotor dynamic characteristics of an ultrahigh speed hydrogen turbopump for a 25 tf expander cycle engine.The dynamic model of the rotor-bearing system was established using finite element method.The influence of design parameters on the critical speeds and stability of the rotor was calculated and analyzed, considering the effects of vibration of supporting structure, fluid forces of seals and variation of supporting stiffness and damping coefficients with rotational speed, etc.Some improvement measures for the rotor system were put forward.The results show that the presented design scheme of the turbopump rotor system can meet the rotor critical speed and bending strain energy rate design criteria, and the initial design objectives.The minimum first-order logarithmic decrement of the rotor in the working speed range is about 0.15, which achieves the minimum standard for rotor stability design criteria.According to the test experiences of other turbopumps, measures should be taken to increase the logarithmic decrements to more than 0.22.It is suggested that the stiffness of the elastic supporter at the pump end should be weakened properly, and the fluid seals in the cantilever section of the rotor should be redesigned from a tooth-shaped structure to a more damped orifice structure, so as to further improve the stability margin of the rotor.

References:

[1] 王小军.中国航天运输系统未来发展展望[J].导弹与航天运载技术, 2021(1):1-6.
[2] 岳文龙, 郑大勇, 颜勇, 等.我国高性能液氧液氢发动机技术发展概述[J].中国航天, 2021(10):20-25.
[3] 黄道琼, 王振, 杜大华.大推力液体火箭发动机中的动力学问题[J].中国科学(物理学 力学 天文学), 2019, 49(2):19-30.
[4] 夏德新.高压多级氢涡轮泵转子动力学设计与试验研究[J].导弹与航天运载技术, 2001(6):21-26.
[5] ALLIOT P, GOIRAND B, MARCHAL N.The VINCI hydrogen turbopump development status[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston, Virginia:AIAA, 2002.
[6] OOTA T, KIMOTO K, KAWAI T, et al.Design, fabrication and test of the RL60 fuel turbopump[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virginia:AIAA, 2003.
[7] RACHUK V, TITKOV N.The first Russian LOX-LH2 expander cycle LRE:RD0146[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston, Virginia:AIAA, 2006.
[8] 窦唯, 褚宝鑫.支承总刚度对涡轮泵转子临界转速及稳定性的影响[J].火箭推进, 2014, 40(1):30-38.
DOU W, CHU B X.Effect of bearing supporting stiffness on dynamic stability and critical speed of turbopump rotor system[J].Journal of Rocket Propulsion, 2014, 40(1):30-38.
[9] 廖明夫.航空发动机转子动力学[M].西安:西北工业大学出版社, 2015.
[10] 金路, 王俨剀, 王彤, 等.涡轮泵转子失稳故障分析[J].火箭推进, 2020, 46(4):23-30.
JIN L, WANG Y K, WANG T, et al.Analysis and diagnosis of turbine pump rotor instability[J].Journal of Rocket Propulsion, 2020, 46(4):23-30.
[11] 冀沛尧, 何立东, 胡航领, 等.涡轮泵密封对转子动力特性的影响[J].润滑与密封, 2019, 44(1):52-57.
[12] 白长青, 许庆余, 张小龙.密封和内阻尼对火箭发动机液氢涡轮泵转子系统动力稳定性的影响[J].机械工程学报, 2006, 42(3):150-155.
[13] 窦唯, 叶志明, 闫宇龙.涡轮泵叶轮/转子配合间隙对稳定性的影响[J].火箭推进, 2016, 42(4):26-34.
DOU W, YE Z M, YAN Y L.Effect of tolerance clearance between turbine rotor and impeller in liquid-propellant rocket engine on stability[J].Journal of Rocket Propulsion, 2016, 42(4):26-34.
[14] BAI C Q, XU Q Y, WANG J Y.Effects of flexible support stiffness on the nonlinear dynamic characteristics and stability of a turbopump rotor system[J].Nonlinear Dynamics, 2011, 64(3):237-252.
[15] 罗巧军, 褚宝鑫, 须村.氢涡轮泵次同步振动问题的试验研究[J].火箭推进, 2014, 40(5):14-19.
LUO Q J, CHU B X, XU C.Experimental research for sub-synchronous vibration problems of hydrogen turbopump[J].Journal of Rocket Propulsion, 2014, 40(5):14-19.
[16] OKAYASU A, OHTA T, AZUMA T, et al.Vibration problem in the LE-7 liquid hydrogen turbopump[C]//26th AIAA/SAE/ASME/ASEE Joint Propulsion Conference.Reston, Virginia:AIAA, 1990.
[17] MATTHEW C E.Solution of the sub-synchronous whirl problem in the high-pressure hydrogen turbopump of the space shuttle main engine[C]//14th AIAA/SAE Joint Propulsion Conference.Reston, Virginia:AIAA, 1978.
[18] CHILDS D W.The space shuttle main engine high-pressure fuel turbopump rotordynamic instability problem[J].Journal of Engineering for Power, 1978, 100(1):48-57.
[19] 崔荣军, 何伟锋.25吨级膨胀循环发动机技术方案研究[J].导弹与航天运载技术, 2015(6):21-24.
[20] 李铭, 胡晓睿, 涂霆, 等.一种超高转速液氢涡轮泵柔性转子:CN 111828372 A[P].2020-10-27.
[21] 王正.转动机械的转子动力学设计[M].北京:清华大学出版社, 2015.
[22] ERTAS B H, AL-KHATEEB E, VANCE J M.Rotordynamic bearing dampers for cryogenic rocket engine turbopumps[J].Journal of Propulsion and Power, 2003, 19(4):674-682.

Memo

Memo:
-
Last Update: 1900-01-01