|Table of Contents|

Electrochemical machining ofrocket engine turbopump shaft(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年02期
Page:
127-132
Research Field:
目次
Publishing date:

Info

Title:
Electrochemical machining ofrocket engine turbopump shaft
Author(s):
MA Changjin1LIU Jia2WANG Wenzhao1XIE Herui1HUO Shihui3
(1.Xian Aerospace Engine Limited Company, Xian 710100, China 2.Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 3.Xian Aerospace Propulsion Instilute, Xian 710100, China)
Keywords:
hole enlargement electrochemical machining cathode design electrolyte flow rate parameter optimization
PACS:
TG662
DOI:
-
Abstract:
A liquid rocket engine turbopump shaft cavity adopts stepped deep hole structure, the diameter of deep hole with length of 424 mm was needed to be enlarged from φ71.8 mm to φ89 mm. Using conventional machining, there are problems such as easy to shake the tool, poor heat dissipation conditions, processing extremely difficult, high cost etc. A workpiece rotation, the cathode adjustable type servo feed electrochemical machining methods was proposed to solve deep hole reaming problem with large depth to diameter ratio, with the aid of flow field simulation technology. Which was completed within the edge of the tool cathode blade optimization design, long blade cathode electrolyte nozzle structural design and optimization, transition arc cathode contour design and optimization, the adaptability of restructuring and finished the processing device. Electrolytic reaming technology of electrolytic machining parameters optimization was present in the electrolyte concentration of 20(sodium nitrate solution), electrolyte temperature 29-33 ℃, electrolyte inlet pressure 0.3 MPa, voltage 20 V, cathode feeding speed 0.02 mm/min, motor speed 8 r/min processing conditions, with the ultrasonic thickness measuring instrument in the machine to detect the remaining wall thickness. The cathode was dynamically adjusted to produce a shaft deep hole structure with roundness and coaxiality better than φ0.02 mm and diameter accuracy better than 0.2 mm.

References:

[1] 张贵田.高压补燃液氧煤油发动机[M].北京:国防工业出版社, 2005.
[2] 金路, 王俨剀, 王彤, 等.涡轮泵转子失稳故障分析[J].火箭推进, 2020, 46(4):23-30.
JIN L, WANG Y K, WANG T, et al.Analysis and diagnosis of turbine pump rotor instability[J].Journal of Rocket Propulsion, 2020, 46(4):23-30.
[3] 袁思波, 于振涛, 皇甫强, 等.钛合金细长子孔的钻削工艺研究[J].稀有金属快报, 2005, 24(12):38-40.
[4] 张祖军, 陈奎儒, 刘继光, 等.深小孔特种加工[J].机械工程与自动化, 2004(6):20-22.
[5] 李鹏, 陈永当, 鲍志强, 等.国内外电解加工的研究现状[J].机电一体化, 2013, 19(8):13-15.
[6] 徐斌,史业君,刘海波.深小型孔电解加工技术研究[C]//第 14 届全国特种加工学术会议论文集.哈尔滨:哈尔滨工业大学出版社,2011.
[7] 韩亮, 张凌云.TA2M钛板扩孔成形中的形状畸变现象研究[J].沈阳航空工业学院学报, 2009, 26(3):19-21.
[8] 徐家文, 云乃彰, 王建业.电化学加工技术:原理·工艺及应用[M].北京:国防工业出版社, 2008.
[9] 夏任波.电解扩孔加工试验研究[J].林业机械与木工设备, 2016, 44(5):42-45.
[10] 卓开富.螺旋电极电解扩孔工艺研究[J].机械, 1998, 25(2):5-7.
[11] 唐霖.立式刻槽和扩孔电解加工装置设计[J].电加工与模具, 2009(2):32-36.
[12] 李兆龙, 韦东波, 狄士春, 等.极脉冲电解加工变截面孔研究[J].兵工学报, 2012, 33(2):197-202.
[13] 陈玉宏, 刘嘉, 朱荻.小间隙高速精密电解拉削扩孔方法研究[J].机械制造与自动化, 2021, 50(2):5-8.
[14] 张京超, 田明鑫, 徐文骥, 等.电解扩孔成形加工装置的设计[J].电加工与模具, 2015(4):62-65.
[15] 张明岐,傅军英,潘志福,等.飞机起落架轮轴深孔中间段电解扩孔加工工艺研究[C]∥第 18 届全国特种加工学术会议论文集.乌鲁木齐:新疆大学出版社,2019.
[16] 何定健, 李建勋, 王勇.深孔加工关键技术及发展[J].航空制造技术, 2008, 51(21):90-93.
[17] 高本河, 吴序堂, 熊镇芹, 等.两端小中间大的深小孔镗削装置[J].机械工艺师, 2000(7):23-25.

Memo

Memo:
-
Last Update: 1900-01-01