|Table of Contents|

Prediction and experiment on fatigue life of metal bellows in bellows propellant tank(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年03期
Page:
71-78
Research Field:
测控与试验
Publishing date:

Info

Title:
Prediction and experiment on fatigue life of metal bellows in bellows propellant tank
Author(s):
FAN Kai12QIAO Yanwei12WANG Tingting12ZHAO Heming12LU Siyuan12
(1.Shanghai Institute of Space Propulsion, Shanghai 201112, China 2.Shanghai Engineering Center of Space Engine, Shanghai 201112, China)
Keywords:
fatigue life prediction metal bellows bellows propellant tank
PACS:
V415.5
DOI:
-
Abstract:
The bellows propellant tank is the most widely used and mature tank type in the propellant refueling system of space vehicle.The metal bellows is stretched and compressed repeatedly during the tank work process, and its fatigue life is directly related to the reliability of the system.Therefore, it is urgent to accurately predict the fatigue life of the metal bellows.Firstly, three types of equivalent life models(Goodman model, Gerber model and Soderberg model)were used to modify the stress-fatigue life curve, and the generalized stress-fatigue life curved surface of SUS304 stainless steel was obtained based on the fatigue performance test data.Then, the fatigue life of the metal bellows under the full-stroke working condition was predicted and verified by the fatigue test.Finally, according to the specific temperature alternating compensation requirements of the metal diaphragm tank,the fatigue life of metal bellows under small stroke was analyzed.The results show that the generalized stress-fatigue life curved surface based on the revision of the equivalent life model provides a slightly conservative result for the fatigue life of metal bellows, and the corner of the inner wave peak, as the weak position, should be considered in the design and manufacturing process of metal bellows.

References:

[1] 孙威,左岁寒,张峤,等.膜盒贮箱推进剂补加过程的建模与仿真[J].航天器环境工程,2015,32(6):589-592.
[2] 江铭伟.俄罗斯空间站推进剂补加程序分析[J].火箭推进,2013,39(4):8-12.
JIANG M W.Analysis of propellant refueling program for Russian space station[J].Journal of Rocket Propulsion,2013,39(4):8-12.
[3] 张青松,范瑞祥,尕永婧,等.液体火箭金属膜盒式蓄压器的动力学模型[J].火箭推进,2021,47(2):81-86.
ZHANG Q S,FAN R X,GA Y J,et al.Dynamic model study of metal bellows accumulator for liquid launch vehicles[J].Journal of Rocket Propulsion,2021,47(2):81-86.
[4] 张婷,满满,张翼,等.运载火箭用蓄压器膜盒容积测量方法及影响因素研究[J].液压与气动,2020(4):87-90.
[5] 王亚军,陈牧野,周浩洋.平板锥形金属膜盒内压柱失稳理论研究[J].导弹与航天运载技术,2019(6):11-16.
[6] 吴霖,姜绪强,李铭,等.压力对膜盒式端面密封平衡直径的影响[J].火箭推进,2021,47(2):54-60.
WU L,JIANG X Q,LI M,et al.Effect of the pressure on balance diameter of the metal bellows mechanical face seal[J].Journal of Rocket Propulsion,2021,47(2):54-60.
[7] HALPIN J C,JOHNSON T A,WADDOUPS M E.Kinetic fracture models and structural reliability[J].International Journal of Fracture Mechanics,1972,8(4):465-468.
[8] WADDOUPS M E,EISENMAN J R,KAMINSKI B E.Macroscopic fracture mechanics of material[J].Engineering Fracture Mechanics,1972,5(10):446-454.
[9] 阎楚良,高镇同.疲劳性能广义σ-N曲面[J].机械工程学报,1999,35(1):103-105.
[10] 张书明,阎楚良,高镇同.广义断裂性能曲面[J].机械工程学报,2001,37(12):37-41.
[11] 熊峻江,武哲,高镇同.广义疲劳等寿命曲线与二维疲劳极限概率分布[J].应用数学和力学,2002,23(10):1055-1060.
[12] BASQUIN O H.The exponential law of endurance tests[J].Proceedings of ASTM,1919(10):625-630.
[13] KAWAI M,YANO K.Probabilistic anisomorphic constant fatigue life diagram approach for prediction of P-S-N curves for woven carbon/epoxy laminates at any stress ratio[J].Composites Part A:Applied Science and Manufacturing,2016,80:244-258.
[14] STEPHENS R I,FUCHS H O.Metal fatigue in engineering [M].New York:John Wiley & Sons Inc,2001.
[15] VASSILOPOULOS A P,MANSHADI B D,KELLER T.Influence of the constant life diagram formulation on the fatigue life prediction of composite materials[J].International Journal of Fatigue,2010,32(4):659-669.
[16] SENDECKYJ G P.Constant life diagrams:A historical review[J].International Journal of Fatigue,2001,23(4):347-353.
[17] GAO J X,AN Z W,KOU H X.Fatigue life prediction of wind turbine rotor blade composites considering the combined effects of stress amplitude and mean stress[J].Proceedings of the Institution of Mechanical Engineers,Part O:Journal of Risk and Reliability,2018,232(6):598-606.
[18] GERBER W Z.Investigation of allowable stress in iron construction [J].Bayer Arch Ing Ver,1974,6(6):101-110.
[19] GOODMAN J.Mechanics applied to engineering[EB/OL].https://www.researchgate.net/publication/265350702_Mechanics_Applied_to_Engineering,1930.
[20] SODERBERG C R.Factor of safety and working stress[J].Transactions of the ASME,1930,52(2):13-28.
[21] 刘俭辉,王生楠,韦尧兵,等.304不锈钢低周疲劳断裂特性的研究[J].航空制造技术,2013,56(17):84-88.

Memo

Memo:
-
Last Update: 1900-01-01