|Table of Contents|

Time domain distributed parameter system dynamic model of combustion components(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年04期
Page:
29-35
Research Field:
目次
Publishing date:

Info

Title:
Time domain distributed parameter system dynamic model of combustion components
Author(s):
LI Yuanqi1 ZHAO Xiaohui1 CHEN Hongyu1 LIU Hongjun2 LIU Shang1
(1.Xian Aerospace Propulsion Institute, Xian 710100, China 2.School of Aerospace, Northwestern Polytechnical University, Xian 710072, China)
Keywords:
liquid rocket engine combustion components distributed parameter method nonlinear time domain model
PACS:
V433.9
DOI:
-
Abstract:
The dynamic characteristics of liquid rocket engines, especially the system dynamics characteristics related to combustion components, have always been an important research content in theoretical research and engineering design.In this paper, the dynamic model of nonlinear distributed parameter combustion module was established in time domain.The research range of frequency in the time domain was extended from low frequency to middle and high frequency which covers the first order longitudinal acoustic frequency.The numerical solution of the model was carried out by the method of space and time separation, the model was spatially discretized by the ROE scheme, and the time discretized by the Dassl implicit variable step size scheme.So the problem of rigid partial differential equation was solved.Examples of passive isocross section, passive variable cross section and linear heat source show that the correct steady-state solution of gas path and basically capture the discontinuous characteristics of flow field can be obtained by the model.The gas-path examples of entropy wave and sound wave show that the characteristics of low-frequency entropy wave and high-frequency sound wave can accurately be reflected by the model.The dissipation phenomenon of entropy wave at high frequency can also be described.

References:

[1] 张贵田.高压补燃液氧煤油发动机[M].北京:国防工业出版社,2005.
[2] 黄敏超,刘昆,邢宝玉.液体火箭发动机动态性能分析[M].长沙:国防科技大学出版社,2015.
[3] 克洛克,程心一.液体火箭发动机燃烧不稳定性理论[M].张逸民,译.北京:国防工业出版社,1965.
[4] 刘昆,张育林.一维可压缩流的有限元状态空间模型[J].推进技术,1999,20(5):62-66.
[5] 刘昆,张育林.液体火箭发动机燃烧室的一种分区模型[J].航空动力学报,2002,17(1):135-139.
[6] 程谋森.液氢液氧发动机预冷与起动过程模型及PVM仿真研究[D].长沙:国防科学技术大学,2000.
[7] 刘上,刘红军,陈宏玉.富氧燃气发生器动态特性分析[J].航空动力学报,2013,28(1):226-232.
[8] 刘上,刘红军,陈宏玉.液体火箭发动机热力组件动力学模型[J].宇航学报,2012,33(10):1512-1518.
[9] 刘敬华,凌文辉,刘兴洲,等.超音速燃烧室性能非定常准一维流数值模拟[J].推进技术,1998,19(1):1-6.
[10] 王兰,邢建文,郑忠华,等.超燃冲压发动机内流性能的一维评估[J].推进技术,2008,29(6):641-645.
[11] 牛东圣,侯凌云,潘鹏飞.不同燃料超声速燃烧室准一维计算模型[J].清华大学学报(自然科学版),2013,53(4):567-572.
[12] 吕翔.火箭基组合循环(RBCC)发动机性能分析模型研究[D].西安:西北工业大学,2005.
[13] FREZZOTTI M L,NASUTI F,HUANG C,et al.Extraction of response function from numerical simulations and their use for longitudinal combustion intsbility modeling[C]//55th AIAA Aerospace Sciences Meeting.Reston,Virginia:AIAA,2017.
[14] FREZZOTTI M L,NASUTI F,HUANG C,et al.Response function modeling in the study of longitudinal combustion instability by a quasi-1D eulerian solver[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference.Reston,Virginia:AIAA,2015.
[15] DALESSANDRO S,FREZZOTTI M L,FAVINI B,et al.A multi-dimensional approach for low order modeling of combustion instability in a rocket combustor[C]//2018 Joint Propulsion Conference.Reston,Virginia:AIAA,2018.
[16] 阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006.
[17] MOHANRAJ R,NEUMEIER Y,ZINN B.Modification of Roes Riemann solver for the Euler equations with source terms[C]//34th Aerospace Sciences Meeting and Exhibit.Reston,Virginia:AIAA,1996.
[18] 徐绪海,朱方生.刚性微分方程的数值方法[M].武汉:武汉大学出版社,1997.
[19] PETZOLD L R.Description of DASSL:A differential/algebraic system solver[M].Livermore,CA:Sandia National Labs,1982.
[20] 格列克曼.液体火箭发动机自动调节[M].顾明初,郁明桂,邱明煜,译.北京:宇航出版社,1995.

Memo

Memo:
-
Last Update: 1900-01-01