|Table of Contents|

Analysis on dynamic impact simulation of the connection structure of a pressure reducing valve(PRV)(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年04期
Page:
72-80
Research Field:
目次
Publishing date:

Info

Title:
Analysis on dynamic impact simulation of the connection structure of a pressure reducing valve(PRV)
Author(s):
XUE Jie ZHANG Yuntao WANG Jun LI Feng
(Science and Technology on Liquid Rocket Engine Laboratory, Xian Aerospace Propulsion Institute, Xian 710100, China)
Keywords:
pressure reducing valve(PRV) connection structure impact dynamics axial force
PACS:
TH212 TH213.3
DOI:
-
Abstract:
In order to study the mechanical characteristics of the connection structure of a pressure reducing valve(PRV)in the aerospace system during the impact test, an elastoplastic model of metal materials was used to carry out an impact dynamic simulation analysis on the fixed connecting structure of the pressure reducing valve, based on the Hilber-Hughes Taylor implicit integration algorithm with second-order accuracy, which focuses on comparing the maximum axial force of the U-shaped ring and connecting screw in the two fixed connection structures under the impact environment, and further analyzes the mechanical mechanism of the difference in the axial force of the connection structure under the impact environment, by studing the pressure change of the connection structure on the PRV. The results were obtained: the fixed connection structure needs to have a continuous pre-tightening force during the impact process to ensure that the connection structure does not generate a stepwise increase in axial force during the process impact, the material yield ofconnecting parts(U-rings, screws), which will cause the remaining pre-tightening force of the connecting parts to decrease.Finally, a sufficient condition that the fixed connection structure can safely withstand multiple shocks was given, that is, the fixed connection does not yield material during the impact.

References:

[1] 休泽尔.液体火箭发动机现代工程设计[M].朱宁昌,译.北京:中国宇航出版社,2004.
[2] 刘德林,袁洪,陶春虎.30CrMnSiNi2A钢螺钉断裂分析[J].失效分析与预防,2009,4(3):174-177.
[3] 唐文忠,刘海波,张林涛.ML30CrMnSi螺钉断裂分析[J].金属制品,2015,41(3):54-58.
[4] 王明娣.SWRCH22A自攻螺钉断裂原因分析[J].热加工工艺,2011,40(12):197-198.
[5] 王荣,郭春秋.电梯用高强度螺钉断裂分析[J].理化检验(物理分册),2010,46(6):392-395.
[6] 王挺,李振华.镀锌螺钉断裂分析[J].理化检验(物理分册),2015,51(9):668-670.
[7] 陈强,周公文,郑文祥,等.燃气轮发电机导电螺钉的断裂原因分析[J].理化检验(物理分册),2016,52(7):476-478.
[8] 陈灵,梁思祖,刘正义.牵引销紧固螺钉断裂分析[J].机械工程材料,2006,30(4):86-88.
[9] 刘杰,关迪,肖滨,等.某电子设备铆钉冲击断裂原因分析与改进[J].电子机械工程,2017,33(4):26-30.
[10] 陈光杰,江雄.某型机箱冷板紧固件失效分析[J].机械研究与应用,2015,28(6):86-87.
[11] 薛杰,王伟,杜大华,等.姿控动力系统连接螺钉振动疲劳仿真分析研究[J].火箭推进,2019,45(4):38-44.
XUE J,WANG W,DU D H,et al.Simulation analysis for vibration fatigue of the screw in divert and attitude control system[J].Journal of Rocket Propulsion,2019,45(4):38-44.
[12] 潘伟,史志刚,朱珊珊,等.柴油发电机固定螺钉断裂失效分析[J].理化检验(物理分册),2019,55(3):209-213.
[13] 刘春江,刘新灵,陈星.基于有限元分析的螺钉断裂失效研究[J].失效分析与预防,2014,9(3):141-145.
[14] 崔喆珉,王园园,刘海波,等.压铆螺钉断裂失效分析[J].金属制品,2016,42(4):55-57.
[15] 金昊昀,王荣,吕渊.SWRCH22A钢螺钉的断裂原因[J].机械工程材料,2020,44(9):99-102.
[16] 胡春燕,刘新灵,陶春虎,等.0Cr17Ni4Cu4Nb钢制螺钉断裂原因分析[J].材料工程,2012,40(12):21-23.
[17] 侯帅帅,曾现琛,李洪春,等.平衡重螺钉断裂失效分析[J].化工装备技术,2019,40(2):15-18.
[18] 张雄,王天舒.计算动力学[M].北京:清华大学出版社,2007.
[19] 罗伯特·D·库克,戴维·S·马尔库斯,迈克尔·E·普利沙,等.有限元分析的概念与应用[M].4版.关正西,强洪夫,译.西安:西安交通大学出版社,2007.
[20] NASTRAN M.Dynamic analysis users guide[Z].[S.l.]:MSC Software Corporation,2010.

Memo

Memo:
-
Last Update: 1900-01-01