|Table of Contents|

Review on the life loss mechanism of hollow cathode coupling discharge(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年01期
Page:
1-11
Research Field:
目次
Publishing date:

Info

Title:
Review on the life loss mechanism of hollow cathode coupling discharge
Author(s):
ZHAO Zhiwei1 ZHANG Tianping12 RAN Wenliang1 LI Xuan1
(1.Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China 2.Key Laboratory of Space Electric Propulsion Technology of Gansu Province, Lanzhou 730000, China)
Keywords:
hollow cathode coupling discharge ion thruster hall thruster plasma
PACS:
V439
DOI:
-
Abstract:
The coupling discharge of hollow cathode in ion thruster and hall thruster is significantly different from its independent discharge with flat electrode, mainly manifested in different working characteristics and greatly shortened service life.Based on the fact that the design life of hollow cathode is significantly different from its actual life in thruster, the main reasons for the shortening of the life of hollow cathode in thruster were analyzed, the influence of electric field, magnetic field and background neutral gas density on the life of hollow cathode was summarized, and the main research contents that need to be further deepened were put forward.

References:

[1] 于达仁,刘辉,丁永杰.空间电推进原理[M].哈尔滨:哈尔滨工业大学出版社,2012.
[2] 李文博,胡俊锋,孙昊,等.电推进空心阴极热子的寿命评估研究[J].推进技术,2017,38(9):2146-2151.
[3] COLETTI M,GABRIEL S B.A model for Barium oxide depletion from hollow cathode inserts[J].IEEE Transactions on Plasma Science,2009,37(1):58-66.
[4] 杨威,张天平,冯杰,等.石墨触持极空心阴极性能实验研究[J].真空与低温,2017,23(2):87-91.
[5] RUDWAN I,WALLACE N,COLETTI M,et al.Emitter depletion measurement and modeling in the T5&T6 Kaufman-type ion thrusters[R].IEPC2007-256.
[6] SENGUPTA A.Destructive physical analysis of hollow cathodes from the Deep Space 1 Flight spare ion engine 30 000 hr life test[C]//29th International Electric Propulsion Conference.Princeton,NJ:[s.n.],2005.
[7] POLK J,KAKUDA R,ANDERSON J,et al.Performance of the NSTAR ion propulsion system on the Deep Space One mission[C]//39th Aerospace Sciences Meeting and Exhibit.Reston,Virginia:AIAA,2001.
[8] 张伟文,张天平.空间电推进的技术发展及应用[J].国际太空,2015(3):1-8.
[9] SARVER-VERHEY T.Continuing life test of a xenon hollow cathode for a space plasma contactor[C]//30th Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,1994.
[10] VAN NOORD J L,KAMHAWI H,MCEWEN H K.Characterization of a high current,long life hollow cathode[R].NASA/TM-2006-214095.
[11] MIKELLIDES I G,KATZ I,GOEBEL D M,et al.Wear mechanisms in electron sources for ion propulsion,II:Discharge hollow cathode[J].Journal of Propulsion and Power,2008,24(4):866-879.
[12] MENG T H.Accelerated erosion of keeper electrode during coupling discharge between Hall thruster and hollow cathode[J].Vacuum,2020,172:109040.
[13] ROVEY J L,GALLIMORE A D.Dormant cathode erosion in a multiple-cathode gridded ion thruster[J].Journal ofPropulsion and Power,2008,24(6):1361-1368.
[14] 金广明,康亮杰.“天和”核心舱霍尔电推进子系统设计[J].中国航天,2021(8):22-27.
[15] 张天平,贾艳辉,郭宁.离子电推进物理[M].北京:科学出版社,2019.
[16] 郭宁,江豪成,高军,等.离子发动机空心阴极失效形式分析[J].真空与低温,2005,11(4):239-242.
[17] JAMESON K K,GOEBEL D M,WATKINS R M.Hollow cathode and thruster discharge chamber plasma measurements using high-speed scanning probes[R].IEPC-2005-269.
[18] ZIKEYEV M V,SHAGAYDA A.Probe measurements in discharge chamber of low-power ion thruster[R].IEPC-2003-120.
[19] KOTHNUR P S,SHIN J,RAJA L L.Experimental and numerical study of external plume characteristics in microhollow cathode discharges[J].IEEE Transactions on Plasma Science,2005,33(2):564-565.
[20] BECATTI G,PEDRINI D,KASOJI B,et al.Plasma plume diagnostics of a LaB6 hollow cathode with triple Langmuir probes[J].Journal of Instrumentation,2019,14(8):C08009.
[21] 赵以德,李建鹏,张天平,等.两种会切场离子推力器对比研究[J].推进技术,2021,42(11):2633-2640.
[22] 赵以德,张天平,李娟,等.40 cm离子推力器设计与性能测试[J].高电压技术,2020,46(6):2192-2199.
[23] FARNELL C C,WILLIAMS J D,FARNELL C C.Comparison of hollow cathode discharge plasma configurations[J].Plasma Sources Science and Technology,2011,20(2):025006.
[24] SEKERAK M J.Plasma oscillations and operational modes in Hall effect thrusters[D].Detroit:University of Michigan,2014.
[25] POTRIVITU G C.Anode position influence on discharge modes of a LaB6 cathode in diode configuration[J].Vacuum,2018,151:122-132.
[26] QIN Y.The analysis of high amplitude of potential oscillations near the hollow cathode of ion thruster[J].Acta Astronautica,2017,134:265-277.
[27] JORNS B A,MIKELLIDES I G,GOEBEL D M.Temporal fluctuations in a 100 A LaB6 hollow cathode[R].IEPC 2013-385.
[28] FOSTER J E,PATTERSON M J.Downstream ion energy distributions in a hollow cathode ring cusp discharge[J].Journal of Propulsion and Power,2005,21(1):144-151.
[29] DUM C T,CHODURA R,BISKAMP D.Turbulent heating and quenching of the ion sound instability[J].Physical Review Letters,1974,32(22):1231-1234.
[30] KUZORA I V.Dynamic polarizability of plasma and turbulent heating of light and heavy ions[J].Physics Letters A,2003,315(3/4):248-257.
[31] BYCHENKOV V Y.Ion-acoustic turbulence and anomalous transport[J].Physics Reports,1988,164(3):119-215.
[32] DUBOIS D F,PESME D.Stability of ion acoustic turbulent states[J].Journal of Statistical Physics,1985,39(5/6):783-816.
[33] HARA K,TREECE C.Ion kinetics and nonlinear saturation of current-driven instabilities relevant to hollow cathode plasmas[J].Plasma Sources Science and Technology,2019,28(5):055013.
[34] HAYAKAWA Y,MIYAZAKI K,KITAMURA S.Measurements of electron energy distributions in an ion thruster[J].Journal of Propulsion and Power,1992,8(1):118-126.
[35] FARSHI E,FUKUYAMA T,MATSUKUMA M,et al.Non-Maxwellian shape of electron distribution function in ion acoustic turbulence[J].IEEE Transactions on Plasma Science,2001,29(6):907-910.
[36] WU P,WANG Y B,LI Y,et al.Cathode erosion site distributions in an applied-field magneto plasma dynamic thruster[J].Plasma Science and Technology,2020,22(9):094008.
[37] NING Z X,CHU Y F,LIU X Y,et al.Effect of vacuum backpressure on discharge characteristics of hollow cathode[J].Plasma Science and Technology,2019,21(12):125402.
[38] IKEDA T.Performance characteristics of very low power cylindrical Hall thrusters for the nano-satellite “PROITERES-3”[J].Vacuum,2013,88:63-69.
[39] 康小录,张岩.空间电推进技术应用现状与发展趋势[J].上海航天,2019,36(6):24-34.
[40] FISCH N J,RAITSES Y.Plasma plume of annular and cylindrical Hall thrusters[J].IEEE Transactions on Plasma Science,2008,36(4):1204-1205.
[41] 谢侃,衣晓龙,梁福文,等.空心阴极与霍尔推力器放电振荡关系实验研究[J].固体火箭技术,2022,45(3):484-490.
[42] GOEBEL D,JAMESON K,KATZ I,et al.Plasma potential behavior and plume mode transitions in hollow cathode discharges[R].IEPC2007-277.
[43] JORNS B A,HOFER R R.Plasma oscillations in a 6 kW magnetically shielded Hall thruster[J].Physics of Plasmas,2014,21(5):053512.
[44] JORNS B A,CUSSON S E,BROWN Z,et al.Non-classical electron transport in the cathode plume of a Hall effect thruster[J].Physics of Plasmas,2020,27(2):022311.
[45] YU D R,MENG T H,NING Z X,et al.Confinement effect of cylindrical-separatrix-type magnetic field on the plume of magnetic focusing type Hall thruster[J].Plasma Sources Science and Technology,2017,26(4):04LT02.
[46] KINEFUCHI K,CHO S,FUKATSU T,et al.Keeper ignition and discharge characteristics of hollow cathode center-mounted on Hall thruster[J].Journal of Propulsion and Power,2020,37(2):223-230.
[47] MENG T H,NING Z X,YU D R.Triggering of ionization oscillations in hollow cathode discharge by keeper electrode[J].Physics of Plasmas,2019,26(9):093510.
[48] MENG T H,NING Z X,YU D R.Reduced plume oscillation amplitude in hollow cathode discharge due to enhanced electron emission from keeper electrode[J].Journal of Physics D:Applied Physics,2020,53(18):18LT01.
[49] 王福锋.空心阴极稳态寿命限制机理及拓展方法研究[D].哈尔滨:哈尔滨工业大学,2018.
[50] BAKEEV I Y.Influence of a longitudinal magnetic field on the parameters and characteristics of a forevacuum plasma electron source based on a hollow-cathode discharge[J].Vacuum,2021,187:110161.

Memo

Memo:
-
Last Update: 1900-01-01