|Table of Contents|

Structural topology optimization of vibration test fixture for orbit and attitude control engines(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年01期
Page:
93-102
Research Field:
目次
Publishing date:

Info

Title:
Structural topology optimization of vibration test fixture for orbit and attitude control engines
Author(s):
ZHANG Yuntao XUE Jie SONG Shaowei WU Dan LIU Jianzhao
(Xian Aerospace Propulsion Institute,Xian 710100,China)
Keywords:
orbit and attitude control engine block fixture cone fixture multi-objective topology optimization natural frequency vibration test
PACS:
V434.3
DOI:
-
Abstract:
Aiming at the problems of some vibration test fixture of orbit and attitude control engines,such as large mass, low frequency characteristic, the topology optimization method was adopted to improve the structure design of typical test fixture.Based on the topology optimization module of Optistruct software, the dynamic topology optimization model and multi-objective optimization strategy were discussed, and the setting of optimization control parameters such as dispersion parameters(DISCRETE)and minimum member size(MINDIM)was introduced.Based on the topology optimization of block test fixture of thrust device, the influence of optimization objectives and control parameters on optimization results was studied.The optimized fixture frequency characteristics meet the test requirements, and the weight reduction effect is obvious.The fixture control response under sinusoidal and random vibration test conditions is verified to be stable and effective, and meets the tolerance requirements of the test.Finally, by improving the design of cone test fixture of a certain orbit and attitude control engine, the topology optimization method is further extended and applied.The simulation results show that the modal frequency and dynamic response characteristics of the optimized fixture are significantly improved, which provides reference and guidance for the design of vibration test fixture.

References:

[1] 孙晔,陆海桃,张海英,等.振动试验夹具结构动态设计及试验验证[J].机械强度,2017,39(5):1210-1214.
[2] 周桐,张思箭,李健,等.夹具特性与振动控制方式对试件响应的影响[J].振动、测试与诊断,2007,27(1):58-61.
[3] 薛杰,许红卫,杜大华,等.基于模态法L形工装结构冲击动力学仿真分析[J].火箭推进,2018,44(2):46-54.
XUE J,XU H W,DU D H,et al.Simulation analysis of impact dynamics of L-shaped fixture based on modal method[J].Journal of Rocket Propulsion,2018,44(2):46-54.
[4] 李奇志.环境振动试验若干技术研究[D].南京:南京航空航天大学,2013.
[5] 郭中泽,张卫红,陈裕泽.结构拓扑优化设计综述[J].机械设计,2007,24(8):1-6.
[6] 石波,盛刚,黄雪刚,等.吸气式发动机可调喷管调节片结构优化设计[J].火箭推进,2021,47(3):52-59.
SHI B,SHENG G,HUANG X G,et al.Structural optimization design for variable nozzle flap of airbreathing engines[J].Journal of Rocket Propulsion,2021,47(3):52-59.
[7] RONG J H.Topological optimization design of structures under random excitations using SQP method[J].Engineering Structures,2013,56:2098-2106.
[8] FANG Z P,HOU J J,ZHAI H F.Topology optimization of constrained layer damping structures subjected to stationary random excitation[J].Shock and Vibration,2018,2018:7849153.
[9] LI Q H,WU Q B,LIU J,et al.Topology optimization of vibrating structures with frequency band constraints[J].Structural and Multidisciplinary Optimization,2021,63(3):1203-1218.
[10] 滕晓艳,江旭东,孙艳想,等.基于等效静载荷和模态跟踪的结构拓扑优化[J].振动工程学报,2017,30(3):349-356.
[11] 彭细荣,隋允康.有频率禁区的连续体结构拓扑优化[J].固体力学学报,2007,28(2):145-150.
[12] 龙凯,左正兴,闫清东.静动态多目标下的连续体结构拓扑优化[J].宇航学报,2008,29(2):456-460.
[13] 刘虎,张卫红,朱继宏.简谐力激励下结构拓扑优化与频率影响分析[J].力学学报,2013,45(4):588-597.
[14] 芮强,王红岩,王良曦.多工况载荷下动力舱支架结构拓扑优化设计[J].兵工学报,2010,31(6):782-786.
[15] 朱大昌,宋马军.基于多目标拓扑优化的全柔顺并联机构构型固有振动频率研究[J].中国机械工程,2015,26(13):1794-1801.
[16] 兰凤崇,赖番结,陈吉清,等.考虑动态特性的多工况车身结构拓扑优化研究[J].机械工程学报,2014,50(20):122-128.
[17] Altair Engineering Inc.HyperWorks users guide[EB/OL].http://www.altair.com,2022.
[18] 周建华.简谐响应拓扑优化方法研究及其在正向设计中的应用[D].广州:华南理工大学,2019.
[19] CHEN T Y,WU S C.Multiobjective optimal topology design of structures[J].Computational Mechanics,1998,21(6):483-492.
[20] 范文杰,范子杰,苏瑞意.汽车车架结构多目标拓扑优化方法研究[J].中国机械工程,2008,19(12):1505-1508.
[21] 陈敏超.面向增材制造的空间结构节点拓扑优化设计[D].杭州:浙江大学,2018.

Memo

Memo:
-
Last Update: 1900-01-01