|Table of Contents|

Innovative design method and application of liquid rocket engine integrated additive manufacturing(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年04期
Page:
1-16
Research Field:
目次
Publishing date:

Info

Title:
Innovative design method and application of liquid rocket engine integrated additive manufacturing
Author(s):
TAN Yonghua123 ZHAO Jian3 ZHANG Wukun3 WANG Jun3 GAO Yushan3
(1.China Aerospace Science and Technology Corporation, Beijing 100048, China; 2.Academy of Aerospace Propulsion Technology, Xi'an 710100, China; 3.Science and Technology on Liquid Rocket Engine Laboratory,Xi'an Aerospace Propulsion Institute, Xi'an 710100, China)
Keywords:
liquid rocket engine additive manufacturing integrated innovative design combined structural and functional performance lightweight
PACS:
V43
DOI:
-
Abstract:
The application of additive manufacturing(AM)technology in liquid rocket engine is increasingly extensive and deep. At the design level of the engine, it has undergone three design concept stages:from the initial “in-situ manufacturing substitution” to the “manufacturing-driven design”, and then to “design-led manufacturing”. The innovative design methods and criteria of liquid rocket engine for AM are summarized, including structural optimization design technology, structural and functional integration design technology, complex component integration technology and process constraints and material performance design technology based on AM.Taking some typical thermal and bearing components as examples, such as the gas generator injector, heat exchanger and so on, which are widely used in engine, the specific innovative design ideas of the product after combining AM are introduced. The innovative design methods and development directions of liquid rocket engine by AM are summarized and discussed.

References:

[1] 谭永华.大推力液体火箭发动机研究[J].宇航学报,2013,34(10):1303-1308.
[2] 谭永华,杜飞平,陈建华,等.液氧煤油高压补燃循环发动机深度变推力系统方案研究[J].推进技术,2018,39(6):1201-1209.
[3] 李东,李平岐.长征五号火箭技术突破与中国运载火箭未来发展[J].航空学报,2022,43(10):527269.
[4] 杜飞平.航天液体动力关键技术研究进展与趋势[J].应用力学学报,2023,40(1):7-15.
[5] 张相盟,陈晖,高玉闪,等.500吨级液氧煤油发动机结构动态特性[J].火箭推进,2020,46(2):44-49.
ZHANG X M,CHEN H,GAO Y S,et al.Research on structural dynamic characteristics of the 500-ton LOx/kerosene rocket engine[J].Journal of Rocket Propulsion,2020,46(2):44-49.
[6] 李斌,闫松,杨宝锋.大推力液体火箭发动机结构中的力学问题[J].力学进展,2021,51(4):831-864.
[7] 卢秉恒.增材制造技术:现状与未来[J].中国机械工程,2020,31(1):19-23.
[8] NOURI A,ROHANI SHIRVAN A,LI Y C,et al.Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion:A review[J].Journal of Materials Science & Technology,2021,94:196-215.
[9] PHANDEN R K,SHARMA P,DUBEY A.A review on simulation in digital twin for aerospace,manufacturing and robotics[J].Materials Today:Proceedings,2021,38:174-178.
[10] 张武昆,谭永华,高玉闪,等.液体火箭发动机增材制造技术研究进展[J].推进技术,2022,43(5):29-44.
[11] SEHARING A,AZMAN A H,ABDULLAH S.A review on integration of lightweight gradient lattice structures in additive manufacturing parts[J].Advances in Mechanical Engineering,2020,12(6):1-21.
[12] TIAN X Y,WU L L,GU D D,et al.Roadmap for additive manufacturing:Toward intellectualization and industrialization[J].Chinese Journal of Mechanical Engineering:Additive Manufacturing Frontiers,2022,1(1):100014.
[13] MOHD YUSUF S,CUTLER S,GAO N.Review:The impact of metal additive manufacturing on the aerospace industry[J].Metals,2019,9(12):1286.
[14] BLAKEY-MILNER B,GRADL P,SNEDDEN G,et al.Metal additive manufacturing in aerospace:A review[J].Materials & Design,2021,209:110008.
[15] TEPYLO N,HUANG X A,PATNAIK P C.Laser-based additive manufacturing technologies for aerospace applications[J].Advanced Engineering Materials,2019,21(11):1900617.
[16] URIONDO A,ESPERON-MIGUEZ M,PERINPANAYAGAM S.The present and future of additive manufacturing in the aerospace sector:A review of important aspects[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2015,229(11):2132-2147.
[17] GRADL P R,PROTZ C S.Technology advancements for channel wall nozzle manufacturing in liquid rocket engines[J].Acta Astronautica,2020,174:148-158.
[18] GRADL P,MIRELES O.Additive manufacturing(AM)for propulsion component and system applications[Z].2021.
[19] PAPAGEORGIOU A,TARKIAN M,AMADORI K,et al.Multidisciplinary design optimization of aerial vehicles:A review of recent advancements[J].International Journal of Aerospace Engineering,2018,2018:1-21.
[20] ZHU L,LI N,CHILDS P R N.Light-weighting in aerospace component and system design[J].Propulsion and Power Research,2018,7(2):103-119.
[21] BRAGA D F O,TAVARES S M O,DA SILVA L F M,et al.Advanced design for lightweight structures:Review and prospects[J].Progress in Aerospace Sciences,2014,69:29-39.
[22] DABABNEH O,KIPOUROS T.A review of aircraft wing mass estimation methods[J].Aerospace Science and Technology,2018,72:256-266.
[23] CILIBERTI D,DELLA VECCHIA P,NICOLOSI F,et al.Aircraft directional stability and vertical tail design:A review of semi-empirical methods[J].Progress in Aerospace Sciences,2017,95:140-172.
[24] ZHU J H,ZHANG W H,XIA L.Topology optimization in aircraft and aerospace structures design[J].Archives of Computational Methods in Engineering,2016,23(4):595-622.
[25] LIU L,MA A J,LIU H Y,et al.Research progress of engineering structural optimization in aerospace field[C]//7th International Conference on Mechanical and Aerospace Engineering(ICMAE).London,UK:IEEE,2016.
[26] SEABRA M,AZEVEDO J,ARAU 'JO A,et al.Selective laser melting(SLM)and topology optimization for lighter aerospace componentes[J].Procedia Structural Integrity,2016,1:289-296.
[27] 朱继宏,周涵,王创,等.面向增材制造的拓扑优化技术发展现状与未来[J].航空制造技术,2020,63(10):24-38.
[28] 李佳霖,赵剑,孙直,等.基于移动可变形组件法(MMC)的运载火箭传力机架结构的轻量化设计[J].力学学报,2022,54(1):244-251.
[29] 张允涛,薛杰,宋少伟,等.轨姿控发动机振动试验夹具结构拓扑优化[J].火箭推进,2023,49(1):93-102.
ZHANG Y T,XUE J,SONG S W,et al.Structural topology optimization of vibration test fixture for orbit and attitude control engines[J].Journal of Rocket Propulsion,2023,49(1):93-102.
[30] DONG G Y,TANG Y L,LI D W,et al.Design and optimization of solid lattice hybrid structures fabricated by additive manufacturing[J].Additive Manufacturing,2020,33:101116.
[31] ZHANG C H,WU T,XU S Z,et al.Multiscale topology optimization for solid-lattice-void hybrid structures through an ordered multi-phase interpolation[J].Computer-Aided Design,2023,154:103424.
[32] TEIMOURI M,MAHBOD M,ASGARI M.Topology-optimized hybrid solid-lattice structures for efficient mechanical performance[J].Structures,2021,29:549-560.
[33] WANG C,ZHU J H,WU M Q,et al.Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components[J].Chinese Journal of Aeronautics,2021,34(5):386-398.
[34] LI Y,GAO T,ZHOU Q Y,et al.Layout design of thin-walled structures with lattices and stiffeners using multi-material topology optimization[J].Chinese Journal of Aeronautics,2023,36(4):496-509.
[35] GU D D,SHI X Y,POPRAWE R,et al.Material-structure-performance integrated laser-metal additive manufacturing[J].Science,2021,372(6545):1487.
[36] ZHANG X Q,ZHANG K Q,ZHANG L,et al.Additive manufacturing of cellular ceramic structures:From structure to structure-function integration[J].Materials & Design,2022,215:110470.
[37] YUAN W Z.Development and application of high-end aerospace MEMS[J].Frontiers of Mechanical Engineering,2017,12(4):567-573.
[38] 张武昆,谭永华,高玉闪,等.周期性轻质多孔结构在能量吸收和振动方面的研究进展[J].振动与冲击,2023,42(8):1-19.
[39] 徐亮,谌清云,席雷,等.微类桁架点阵结构填充内冷通道的多目标优化设计[J].西安交通大学学报,2020,54(3):1-11.
[40] 王向明,苏亚东,吴斌,等.微桁架点阵结构在飞机结构/功能一体化中的应用[J].航空制造技术,2018,61(10):16-25.
[41] XIAO Y,WEN J H.Closed-form formulas for bandgap estimation and design of metastructures undergoing longitudinal or torsional vibration[J].Journal of Sound and Vibration,2020,485:115578.
[42] HAN B,ZHANG Z J,ZHANG Q C,et al.Recent advances in hybrid lattice-cored sandwiches for enhanced multifunctional performance[J].Extreme Mechanics Letters,2017,10:58-69.
[43] FAN J X,ZHANG L,WEI S S,et al.A review of additive manufacturing of metamaterials and developing trends[J].Materials Today,2021,50:303-328.
[44] PRAJAPATI M J,KUMAR A,LIN S C,et al.Multi-material additive manufacturing with lightweight closed-cell foam-filled lattice structures for enhanced mechanical and functional properties[J].Additive Manufacturing,2022,54:102766.
[45] SAIRAJAN K K,AGLIETTI G S,MANI K M.A review of multifunctional structure technology for aerospace applications[J].Acta Astronautica,2016,120:30-42.
[46] GRADL P.Advancement of metal additive manufacturing techniques and materials for rocket propulsion applications[Z].2020.
[47] BARROQUEIRO B,ANDRADE-CAMPOS A,VALENTE R A F,et al.Metal additive manufacturing cycle in aerospace industry:A comprehensive review[J].Journal of Manufacturing and Materials Processing,2019,3(3):52.
[48] KERSTENS F,CERVONE A,GRADL P.End to end process evaluation for additively manufactured liquid rocket engine thrust chambers[J].Acta Astronautica,2021,182:454-465.
[49] 谷小军,李城彬,王文龙,等.拓扑优化与增材制造技术的融合及其在民用飞行器设计中的应用[J].航空制造技术,2022,65(14):14-20.
[50] 刘书田,李取浩,陈文炯,等.拓扑优化与增材制造结合:一种设计与制造一体化方法[J].航空制造技术,2017,60(10):26-31.
[51] ZHAO C,SHI B,CHEN S L,et al.Laser melting modes in metal powder bed fusion additive manufacturing[J].Reviews of Modern Physics,2022,94(4):045002.
[52] SANAEI N,FATEMI A.Defects in additive manufactured metals and their effect on fatigue performance:A state-of-the-art review[J].Progress in Materials Science,2021,117:100724.
[53] BECKER T H,KUMAR P,RAMAMURTY U.Fracture and fatigue in additively manufactured metals[J].Acta Materialia,2021,219:117240.
[54] 姜金朋,刘志超,刘筑,等.火箭发动机涡轮叶片疲劳寿命可靠性分析[J].火箭推进,2020,46(2):57-63.
JIANG J P,LIU Z C,LIU Z,et al.Reliability analysis of fatigue life for rocket engine turbine blade[J].Journal of Rocket Propulsion,2020,46(2):57-63.
[55] 杜大华,李斌.液体火箭发动机结构动力学设计关键技术综述[J].航空学报,2023,44(10):37-53.
[56] BLACHOWICZ T,EHRMANN G,EHRMANN A.Metal additive manufacturing for satellites and rockets[J].Applied Sciences,2021,11(24):12036.

Memo

Memo:
-
Last Update: 1900-01-01