|Table of Contents|

Key technologies and test verification of 1.5 tf liquid rocket engine with regenerative cooling(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年04期
Page:
17-25
Research Field:
目次
Publishing date:

Info

Title:
Key technologies and test verification of 1.5 tf liquid rocket engine with regenerative cooling
Author(s):
CHEN Ruida12 XU Hui12 CHEN Hongyu12 WANG Shicheng12 GUAN Liang12 JIN Guangming12
(1. Shanghai Institute of Space Propulsion, Shanghai 201112, China; 2. Shanghai Engineering Research Center of Space Engine, Shanghai 201112, China)
Keywords:
liquid rocket engine regenerative cooling unlike impinging injector additive manufacturing hot-fire test verification
PACS:
V434.3
DOI:
-
Abstract:
The 1.5 tf liquid rocket engine with regenerative cooling is used as the main power of China's next-generation manned spacecraft for manned lunar landing, which has the capability of high reliability, high specific impulse and multiple ignitions. The engine head is an unlike impinging injector with multiple injection units arranged in concentric circles. The combustion chamber is prepared by selective laser melting technology with layer-by-layer fusion in additive manufacturing, and the nozzle extension is prepared by lightweight C/SiC composite material, both of which are connected by bolts, flanges and flexible graphite seals. The combined thermal protection mode of regenerative cooling, liquid film cooling and radiation cooling is used to enhance the cooling effect of the body, and the propellant flow is controlled by the low flow resistance and double-seal linkage pneumatic solenoid valve. Through joint research on design and process, key technologies such as high-performance stable combustion and reliable cooling, integrated additive manufacturing of regenerative cooling body, forming and connecting large-size composite material nozzle have been preliminarily broken through, which have been verified by the ground thermal test and high-altitude simulation hot-fire test. The engine operates stably, with a large margin for regenerative cooling temperature rise. The measured vacuum specific impulse of the engine is 315.3 s, reaching the international advanced level under the same system parameters. The main technical indexes meet the design requirements, laying a solid technical foundation for the subsequent engineering development.

References:

[1] 孙兴亮,高峰,董云冉,等.载人登月航天器推进系统方案选择分析[J].载人航天,2021,27(1):40-46.
[2] 彭坤,杨雷.利用地月间空间站的载人登月飞行模式分析[J].宇航学报,2018,39(5):471-481.
[3] 张智,徐洪平,邓新宇,等.新一代载人登月运载火箭总体方案和关键技术[J].载人航天,2022,28(4):427-432.
[4] 孙纪国,何学青,阳代军,等.大推力氢氧发动机关键制造技术[J].火箭推进,2022,48(2):117-126.
SUN J G,HE X Q,YANG D J,et al.Key manufacturing technology for large thrust LH2/LOx cycle engine[J].Journal of Rocket Propulsion,2022,48(2):117-126.
[5] 李斌,陈晖,马冬英,等.500 tf级液氧煤油高压补燃发动机研制进展[J].火箭推进,2022,48(2):1-10.
LI B,CHEN H,MA D Y,et al.Development of 500 tf class high pressure stage combustion LOx/kerosene rocket engine[J].Journal of Rocket Propulsion,2022,48(2):1-10.
[6] 丁兆波,刘倩,王天泰,等.220 t级补燃循环氢氧发动机推力室研制[J].火箭推进,2021,47(4):13-21.
DING Z B,LIU Q,WANG T T,et al.Development forthrust chamber of 220 t staged combustion cycle LOx/LH2 engine[J].Journal of Rocket Propulsion,2021,47(4):13-21.
[7] 张柏楠,杨庆,杨雷,等.我国新一代载人飞船及其研制进展[J].科学通报,2021,66(32):4065-4073.
[8] MELCHIOR A.A new bipropellant rocket engine for orbital maneuvering[C]//26th Joint Propulsion Conference.Reston,Virginia:AIAA,1990.
[9] STECHMAN C,LAWSON C.Historical evolution of the space shuttle primary and vernier reaction control rocket engine designs[C]//42nd AIAA/ASME/SAE/ASEE JointPropulsion Conference and Exhibit.Reston,Virginia:AIAA,2006.
[10] HALLBERG M,STENHOLM T.Laser welded sandwich manufacturing technology for nozzle extensions[C]//37th Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,2001.
[11] MEISS J H,JAEGER M,GRONOWSKI M,et al.Evolution and status of the orion-ESM propulsion subsystem[C]//AIAA SPACE 2016.Reston,Virginia:AIAA,2016.
[12] ELVERUM G,HOFFMAN A,MILLER J,et al.The descent engine for the lunar module[C]//3rd Propulsion Joint Specialist Conference.Reston,Virginia:AIAA,1967.
[13] FISHER S C,RAHMAN S A.Remembering the giants:Apollo rocket propulsion development[M].Washington,D C:National Aeronautics and Space Administration,2009.
[14] HOLSTEN H.Development of the Ariane 5 upper stage[J].Acta Astronautica,1993,29(2):117-120.
[15] SCHMIDT G,LANGEL G,ZEWEN H.The new European 27.5 kN engine for the Ariane 5 upper stage and the Hermes propulsion module[C]//25th Joint Propulsion Conference.Reston,Virginia:AIAA,1989.
[16] 叶胜,宁静,陈阳春.上面级动力系统发动机热控设计及验证[J].上海航天(中英文),2022,39(4):186-191.
[17] 孙鑫,杨成虎.5 kN再生冷却发动机推力室传热研究[J].火箭推进,2012,38(2):32-37.
SUN X,YANG C H.Heat transfer investigation for 5 kN regeneratively-cooled engine thrust chamber[J].Journal of Rocket Propulsion,2012,38(2):32-37.
[18] 徐辉,易琪,钟徐,等.10 kN双向摇摆再生冷却发动机技术研究[J].火箭推进,2009,35(5):8-12.
XU H,YI Q,ZHONG X,et al.Research on 10 kN gimbaled regeneratively cooled engine[J].Journal of Rocket Propulsion,2009,35(5):8-12.
[19] 陈明亮,刘昌国,徐辉,等.远征三号上面级轨控发动机研制及在轨验证[J].火箭推进,2020,46(3):11-18.
CHEN M L,LIU C G,XU H,et al.Development and in-orbit verification of orbit-control engine in YZ-3 upper stage[J].Journal of Rocket Propulsion,2020,46(3):11-18.
[20] 黄爱清,王立君,黄俊杰,等.气动式双密封控制阀:CN114215936A[P].2022-03-22.
[21] 徐辉,林庆国,汪允武,等.挤压式低室压推力室再生冷却问题[J].火箭推进,2006,32(6):12-15.
XU H,LIN Q G,WANG Y W,et al.Regenerative cooling of the pressure-fed thruster with low-pressure chamber[J].Journal of Rocket Propulsion,2006,32(6):12-15.
[22] 张武昆,谭永华,高玉闪,等.液体火箭发动机增材制造技术研究进展[J].推进技术,2022,43(5):29-44.
[23] 刘彦杰,马武军,王松.陶瓷基复合材料火箭发动机推力室研究进展[J].宇航材料工艺,2007,37(4):1-4.
[24] 杨岩,王朝晖,李伟,等.氢氧发动机C/SiC复合材料喷管延伸段设计研究[J].载人航天,2020,26(3):368-373.
[25] 蒋进明,王松,李伟.先驱体浸渍裂解结合反应熔渗法制备Cf/ZrC-SiC复合材料[J].人工晶体学报,2013,42(4):692-694.
[26] 张守明,王松,陈朝辉.浸渍浆料对先驱体转化Cf/SiC复合材料结构及性能的影响[J].材料工程,2008,36(11):9-12.
[27] 王松,陈朝辉,李伟.不同碳纤维表面状态及其复合材料界面对比[J].稀有金属材料与工程,2007,36(S1):608-610.
[28] 陈明亮,徐辉,陈泓宇,等.火箭发动机复合材料喷管延伸段与短喷管推力室的新型连接结构:CN105888885B[P].2017-10-27.
[29] 陈明亮,刘犇,吴焕钟,等.喷管系统:CN108590890B[P].2019-12-06.
[30] 陈明亮,刘昌国,陈泓宇,等.火箭发动机推力室:CN110159456B[P].2020-07-14.
[31] 徐辉,金广明,陈锐达,等.发动机燃烧室与喷管延伸段的连接系统及其加工方法:CN114412667A[P].2022-04-29.

Memo

Memo:
-
Last Update: 1900-01-01