[1] 刘子俊,冯勇,陈景龙,等.基于多源数据的液体火箭发动机智能异常检测[J].火箭推进,2022,48(3):79-86.
LIU Z J,FENG Y,CHEN J L,et al.Intelligent anomaly detection of liquid rocket engine with multi-source data[J].Journal of Rocket Propulsion,2022,48(3):79-86.
[2] 郭霄峰.液体火箭发动机试验[M].北京:中国宇航出版社,1991.
[3] 宋征宇.运载火箭远程故障诊断技术综述[J].宇航学报,2016,37(2):135-144.
[4] 戴屹梅,张和生,方柯.基于导航定位原理的火箭涡轮泵轴承故障诊断[J].宇航学报,2019,40(3):286-294.
[5] 王奉涛,苏文胜.滚动轴承故障诊断与寿命预测[M].北京:科学出版社,2018.
[6] BOUDIAF A,MOUSSAOUI A,DAHANE A,et al.A comparative study of various methods of bearing faults diagnosis using the case western reserve university data[J].Journal of Failure Analysis and Prevention,2016,16(2):271-284.
[7] SMITH W A,RANDALL R B.Rolling element bearing diagnostics using the Case Western Reserve University data:A benchmark study[J].Mechanical Systems and Signal Processing,2015,64/65:100-131.
[8] 栾孝驰,沙云东,柳贡民,等.基于WPD-KVI-Hilbert变换相结合的滚动轴承早期故障特征精准识别[J].推进技术,2022,43(2):362-373.
[9] YUAN S F,CHU F L.Support vector machines-based fault diagnosis for turbo-pump rotor[J].Mechanical Systems and Signal Processing,2006,20(4):939-952.
[10] WIDODO A,YANG B S,HAN T.Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors[J].Expert Systems with Applications,2007,32(2):299-312.
[11] WANG J H,QIAO L Y,YE Y Q.Fractional envelope analysis for rolling element bearing weak fault feature extraction[J].IEEE/CAA Journal of Automatica Sinica,2017,4(2):353-360.
[12] CHEN J L,LI Z P,PAN J,et al.Wavelet transform based on inner product in fault diagnosis of rotating machinery:A review[J].Mechanical Systems and Signal Processing,2016,70/71:1-35.
[13] HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995.
[14] LEI Y G,LIN J,HE Z J,et al.A review on empirical mode decomposition in fault diagnosis of rotating machinery[J].Mechanical Systems and Signal Processing,2013,35(1/2):108-126.
[15] 李思琦,蒋志坚.基于EEMD-CNN的滚动轴承故障诊断方法[J].机械强度,2020,42(5):1033-1038.
[16] KING F W.Hilbert transforms[M].Cambridge:Cambridge University Press,2009.
[17] 何正嘉,訾艳阳,张西宁.现代信号处理及工程应用[M].西安:西安交通大学出版社,2007.
[18] RAI A,UPADHYAY S H.A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings[J].Tribology International,2016,96:289-306.