|Table of Contents|

Analysis of design, performance and low-attitude operating boundary of common bell nozzle(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年05期
Page:
81-90
Research Field:
目次
Publishing date:

Info

Title:
Analysis of design, performance and low-attitude operating boundary of common bell nozzle
Author(s):
LIU Yangmin TIAN Yuan MA Zhiyu DU Ning DING Yushuo
(Beijing Aerospace Propulsion Institute, Beijing 100076, China)
Keywords:
bell nozzle performance analysis flow separation numerical simulation
PACS:
V43
DOI:
-
Abstract:
A ground starting nozzle was designed by using the non-rotation characteristic line method and quasi-parabolic formula. Four common bell-shaped nozzles were considered, namely, maximum thrust nozzle, optimal parabolic nozzle, truncated ideal nozzle and compressed truncated ideal nozzle. By using a self-designed and efficient Euler equation coupled boundary layer modified nozzle flow field solver to solve the flow field, the key information of nozzle under the adiabatic condition such as vacuum specific impulse and outlet wall pressure were obtained. Then, the flow separation state of nozzle was calculated by FLUENT software, and the performance and low altitude operating boundary of these four commonly used bell nozzles were compared. The results show that the performance difference of the four types of nozzles is very small under the design condition, but both parabolic nozzle and compressed truncated ideal nozzle can improve the outlet wall pressure by adjusting the shape surface, thereby enlarging the available area ratio of nozzle and improving the specific impulse.

References:

[1] 杨立军,富庆飞.液体火箭发动机推力室设计[M].北京:北京航空航天大学出版社,2013.
[2] ÖSTLUND J,MUHAMMAD K B.Supersonic flow separation with application to rocket engine nozzles[J].Applied Mechanics Reviews,2005,58(3):143-177.
[3] 叶正寅,吕广亮.火箭发动机喷管非定常侧向力和流固耦合研究进展[J].航空工程进展,2015,6(1):1-12.
[4] FREY M,HAGEMANN G,FREY M.Status of flow separation prediction in rocket nozzles[R].AIAA-2004-4162.
[5] MARTELLI E,NASUTI F,ONOFRI M.Numerical calculation of FSS/RSS transition in highly overexpanded rocket nozzle flows[J].Shock Waves,2010,20(2):139-146.
[6] RAO G R V.Exhaust nozzle contour for optimum thrust[J].Jet Propulsion,1985,28(6):377-382.
[7] RAO G R V.Approximation of optimum thrust nozzle contour[Z].1960.
[8] AHLBERG J H,HAMILTON S,MIGDAL D,et al.Truncated perfect nozzles in optimum nozzle design[J].ARS Journal,1961,31:614-620.
[9] HOFFMAN J.Design of compressed truncated perfect nozzles[EB/OL].https://www.semanticscholar.org/paper/Design-of-compressed-truncated-perfect-nozzles-Hoffman/782cd76e564677bcb46b6e8c6bb944b69a1f8c7d,1985.
[10] CHAN J,FREEMAN J A.Thrust chamber performance using Navier-Stokes solution[EB/OL].https://www.semanticscholar.org/paper/Thrust-chamber-performance-using-Navier-
Stokes-Chan-Freeman/48b965cd9503ada02a907b508f326
bb19114728b,2013.
[11] YANG V.Liquid rocket thrust chambers:Aspects of modeling,analysis,and design[M].Reston,Virginia:American Institute of Aeronautics and Astronautics,2004.
[12] LEE C,CHOI K,KIM C,et al.Computational investigations of side-loads in a thrust-optimized parabolic nozzle during high-altitude testing[C]//AIAA Scitech 2020 Forum.Reston,Virginia:AIAA,2020.
[13] TERHARDT M,HAGEMANN G,FREY M.Flow separation and side-load behavior of truncated ideal rocket nozzles[EB/OL].https://www.semanticscholar.org/paper/Flow-Separation-and-Side-Load-Behavior-of-Truncated-Ter
hardt-Hagemann/5ab6504ca2194d51277ef77ec09c2994d1
508db7,2001.
[14] TOMITA T,TAKAHASHI M,SASAKI M,et al.Experimental evaluation of side-loads in LE-7A prototype engine nozzle[J].Shock Waves,2009,19(3):213-228.
[15] FREY M,MAKOWKA K,AICHNER T.The TICTOP nozzle:A new nozzle contouring concept[J].CEAS Space Journal,2017,9(2):175-181.
[16] 刘亚洲,李平,陈宏玉,等.一种低空满流的大面积比液体火箭发动机喷管[J].推进技术,2022,43(10):205-212.
[17] 刘国球.液体火箭发动机原理[M].北京:中国宇航出版社,2005.
[18] 刘阳旻.液体火箭发动机喷管附面层求解器开发与应用[D].北京:中国运载火箭技术研究院,2021.
[19] NICKERSON G R,DANG L D,COATS D E,et al.Engineering and programming manual:Two-dimensional kinetic reference computer program[R].NAS8-35931.
[20] 孙得川,杨建文.液体火箭发动机喷管仿真模型[J].火箭推进,2022,48(2):56-65.
SUN D C,YANG J W.Nozzle simulation model of liquid rocket engine[J].Journal of Rocket Propulsion,2022,48(2):56-65.
[21] 丁煜朔.液体火箭发动机喷管型面设计与传热仿真分析研究[D].北京:中国运载火箭技术研究院,2019.
[22] ALLAMAPRABHU C,RAGHUNANDAN B,MORÍÑIGO J A.Improved prediction of flow separation in thrust optimized parabolic nozzles with FLUENT[EB/OL].https://www.semanticscholar.org/paper/Improved-Prediction-of-Flow-Separation-in-Thrust-Allamaprabhu-Raghunandan/37d0bbb64d667f39bcf1bb45861cad3ce22df16e,2011.
[23] NICKERSON G,DANG L.Performance predictions for an SSME configuration with an enlarged throat[EB/OL].https://www.semanticscholar.org/paper/Performance-predictions-for-an-SSME-configuration-Nickerson-Dang/b6
4e64ecff76d00df124ed8917bbd18f9e959f4c,1985.
[24] ZUCROW M J,HOFFMAN J D.Gas dynamics[M].New York:Wiley,1977.

Memo

Memo:
-
Last Update: 1900-01-01