|Table of Contents|

Development of liquid propulsion technology for reusable launch vehicle(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年01期
Page:
1-11
Research Field:
目次
Publishing date:

Info

Title:
Development of liquid propulsion technology for reusable launch vehicle
Author(s):
LI Bin1 LI Cheng2 GAO Yushan2 ZHANG Miao2 LYU Fazheng2
1.Academy of Aerospace Propulsion Technology, Xi'an 710100, China; 2.Xi'an Aerospace Propulsion Institute, Xi'an 710100, China
Keywords:
vertical take-off and vertical landing reusability liquid rocket engine launch vechicle techndogy
PACS:
V434
DOI:
10.3969/j.issn.1672-9374.2024.01.001
Abstract:
Reusability is the technological development trend of launch vehicle in the future, and it is an effective way to reduce the cost of space launch and achieve large-scale space launch. This paper summarizes the development status of vertical take-off and vertical landing reusable launch vehicle power technology at home and abroad. The full mission process of rocket launch and recovery using aerodynamic deceleration and power deceleration was discussed, and the characteristics of power technology of reusable launch vehicle were summarized. The key technologies including wide-range inlet pressure multi-start technology, large-scale rapid and high-precision thrust regulation technology, fault diagnosis and health monitoring technology and maintenance technology were analyzed and so on.

References:

[1] 谭永华, 李平, 杜飞平. 重复使用天地往返运输系统动力技术发展研究[J]. 载人航天, 2019, 25(1): 1-11.
TAN Y H, LI P, DU F P. Research on development of propulsion technology for reusable space transportation system[J]. Manned Spaceflight, 2019, 25(1): 1-11.
[2]宋征宇, 黄兵, 汪小卫, 等. 重复使用航天运载器的发展及其关键技术[J]. 前瞻科技, 2022, 1(1): 62-74.
SONG Z Y,HUANG B,WANG X W,et al.The development and key technologies of reusable space vehicles[J].Science and Technology Foresight, 2022, 1(1): 62-74.
[3]齐环环, 郝京辉, 韩虹, 等. 可重复使用运载技术分析与建议[J]. 中国航天, 2022(5): 64-70.
QI H H, HAO J H, HAN H, et al. Analysis and suggestions on reusable launch technology[J]. Aerospace China, 2022(5): 64-70.
[4]陈士强, 黄辉, 张青松, 等. 中国运载火箭液体动力系统发展方向研究[J]. 宇航总体技术, 2020, 4(2): 1-12.
CHEN S Q, HUANG H, ZHANG Q S, et al. Research on the development directions of Chinese launch vehicle liquid propulsion system[J]. Astronautical Systems Engineering Technology, 2020, 4(2): 1-12.
[5]迟惑. “新谢泼德” 载人首飞: 千亿富豪的冒险之旅[J]. 太空探索, 2021(8): 44-51.
CHI H. The first manned flight of “New Shepard”: the Adventure of Billionaires[J]. Space Exploration, 2021(8): 44-51.
[6]李斌, 张小平, 高玉闪. 我国可重复使用液体火箭发动机发展的思考[J]. 火箭推进, 2017, 43(1): 1-7.
LI B, ZHANG X P, GAO Y S. Consideration on development of reusable liquid rocket engine in China[J]. Journal of Rocket Propulsion, 2017, 43(1): 1-7.
[7]王林. 欧洲重复使用运载火箭发展路线分析[J]. 国际太空, 2023(5):40-45.
WANG L.Analysis of the development route of reusable launch vehicles in Europe[J]. Space International, 2023(5):40-45.
[8]樊伟, 王林, 龙雪丹, 等. 2022年国外重复使用运载器发展综述[J]. 中国航天, 2023(2): 25-30.
FAN W, WANG L, LONG X D, et al. Review of the development of foreign reusable vehicles in 2022[J]. Aerospace China, 2023(2): 25-30.
[9]胡冬生, 刘楠, 刘丙利, 等. 美国重复使用运载火箭发展分析[J]. 国际太空, 2020(12): 38-45.
HU D S, LIU N, LIU B L, et al. Analysis on the development of reusable launch vehicle in the United States[J]. Space International, 2020(12): 38-45.
[10]李斌. 液体火箭主发动机技术现状与发展建议[J]. 前瞻科技, 2022, 1(1): 75-85.
LI B. Current status and development suggestions of liquid rocket main engine technology[J].Science and Technology Foresight, 2022, 1(1): 75-85.
[11]李斌, 刘站国, 吕发正, 等. 130吨级泵后摆高压补燃液氧/煤油发动机关键技术研究[J]. 载人航天, 2022, 28(4): 433-438.
LI B, LIU Z G, LYU F Z, et al. Research on key technologies of 130-ton pump rear swing high-pressure staged combustion LOX/kerosene engine[J]. Manned Spaceflight, 2022, 28(4): 433-438.
[12]JENKINS D R. Hypersonics before the shuttle: a concise history of the X-15 research airplane[R]. NASA Publication SP-2000-4518, 2000.
[13]BOSKOVICH B, KAUFMANN R E. Evolution of the honeywell first-generation adaptive autopilot and its applications to F-94, F-101, X-15, and X-20 vehicles[J]. Journal of Aircraft, 1966, 3(4): 296-304.
[14]DOUGLASS H W. Space shuttle propulsion[R]. NASA N71-10912, 1970.
[15]SMITH M S. NASA's space shuttle program: the columbia tragedy, the discovery mission and the future of the shuttle[J]. Congressional Research Service Reports, 2006, 39(4): 141-153.
[16]TEJWANI G, VAN DYKE D, BIRCHER F. Approach to SSME health monitoring. III-Exhaust plume emission spectroscopy: recent results and detailed analysis[C]//29th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1993.
[17]ZEIDLER D L. Engineering ethics: balancing cost, schedule, and risk lessons learned from the space shuttle[J]. Science Education, 2000, 84(2): 278-280.
[18]HOEY G. X-15 contributions to the X-30[R]. NASAN91-20076, 1991.
[19]KLEVATT P. Design engineering and rapid prototyping for the DC-X single stage rocket technology vehicle[C]//36th Structures, Structural Dynamics and Materials Conference. Reston, Virginia: AIAA, 1995.
[20]BAUMGARTNER R I. VentureStarTM: a revolutionary space transportation lunch system[C]//Aip Conference[s.l.]:s.n.], 1998.
[21]CAMPBELL T, TING J, AVITABILE P, et al. Dynamic properties of 3-D reinforced C/SiC for the RS-2200 linear aerospike engine[C]//24th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings. Hoboken, NJ: John Wiley & Sons, Inc., 2008.
[22]KLEVATT P. Design engineering and rapid prototyping for the DC-X single stage rocket technology vehicle[C]//36th Structures, Structural Dynamics and Materials Conference.Reston, Virginia: AIAA, 1995: 1425.
[23]高朝辉, 刘宇, 肖肖, 等. 垂直着陆重复使用运载火箭对动力技术的挑战[J]. 火箭推进, 2015, 41(3): 1-6.
GAO Z H, LIU Y, XIAO X, et al. Challenge to propulsion technology for vertical landing reusable launch vehicle[J]. Journal of Rocket Propulsion, 2015, 41(3): 1-6.
[24]崔乃刚, 吴荣, 韦常柱, 等. 垂直起降可重复使用运载器发展现状与关键技术分析[J]. 宇航总体技术, 2018(2): 27-42.
CUI N G, WU R, WEI C Z, et al. Development and key technologies of vertical takeoff vertical landing reusable launch vehicle[J]. Astronautical Systems Engineering Technology, 2018(2): 27-42.
[25]包为民, 汪小卫, 董晓琳. 航班化航天运输系统对动力的发展需求与技术挑战[J]. 火箭推进, 2021, 47(4): 1-5.
BAO W M, WANG X W, DONG X L. Development demands and challenges of propulsion technology for space transportation system in airline-flight-mode[J]. Journal of Rocket Propulsion, 2021, 47(4): 1-5.
[26]郑雄, 杨勇, 姚世东, 等. 法尔肯9可重复使用火箭发展综述[J]. 导弹与航天运载技术, 2016(2): 39-46.
ZHENG X, YANG Y, YAO S D, et al. Survey and review on development of Falcon 9 reusable rocket[J]. Missiles and Space Vehicles, 2016(2): 39-46.
[27]SpaceX. Falcon 9 launch vehicle payload user's guide[M].hawthorne: Space Exploration Technologies Corporation, 2009.
[28]杨开, 才满瑞. 国外液氧/甲烷发动机的最新进展[J]. 中国航天, 2017(10): 14-19.
YANG K, CAI M R. The latest development of foreign liquid oxygen/methane engines[J]. Aerospace China, 2017(10): 14-19.
[29]孟光, 刘昶, 杨冬春, 等. 美国SpaceX超重-星舰首飞分析及对中国航天产业的启示[J]. 航空学报, 2023, 44(10): 1-11.
MENG G, LIU C, YANG D C, et al. First flight of SpaceX heavy-lift starship: enlightenment for aerospace industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 1-11.
[30]鲁宇, 汪小卫, 高朝辉, 等. 重复使用运载火箭技术进展与展望[J]. 导弹与航天运载技术, 2017(5): 1-7.
LU Y, WANG X W, GAO Z H, et al. Progress and prospect of reusable launch vehicle technology[J]. Missiles and Space Vehicles, 2017(5): 1-7.
[31]郑大勇, 颜勇, 孙纪国. 液氧/甲烷发动机重复使用关键技术发展研究[J]. 导弹与航天运载技术, 2018(2): 31-35.
ZHENG D Y, YAN Y, SUN J G. Development study of key reusable technology for LOX/methane engine[J]. Missiles and Space Vehicles, 2018(2): 31-35.
[32]徐大富, 张哲, 吴克, 等. 垂直起降重复使用运载火箭发展趋势与关键技术研究进展[J]. 科学通报, 2016, 61(32): 3453-3463.
XU D F, ZHANG Z, WU K, et al. Recent progress on development trend and key technologies of vertical take-off vertical landing reusable launch vehicle[J]. Chinese Science Bulletin, 2016, 61(32): 3453-3463.
[33]王芳, 程洪玮, 彭博. “猎鹰9” 运载火箭海上平台成功回收的分析及启示[J]. 装备学院学报, 2016, 27(6): 69-74.
WANG F, CHENG H W, PENG B. Analysis and enlightenment of successful retrieval of “Falcon 9” rocket on offshore platform[J]. Journal of Equipment Academy, 2016, 27(6): 69-74.
[34]焉宁, 胡冬生, 郝宇星. SpaceX公司 “超重-星舰” 运输系统方案分析[J]. 国际太空, 2020(11): 11-17.
YAN N, HU D S, HAO Y X. Scheme analysis of SpaceX company's “overweight-starship” transportation system[J]. Space International, 2020(11): 11-17.
[35]杨开, 米鑫. SpaceX公司重复使用运载火箭发展分析[J]. 国际太空, 2020(9): 13-17.
YANG K, MI X. Development analysis of SpaceX reusable launch vehicle[J]. Space International, 2020(9): 13-17.
[36]张晓东, 刘昶, 朱亮聪, 等. 垂直起降重复使用液氧/甲烷运载火箭发展路线探讨[J]. 空天技术, 2022(3): 71-79.
ZHANG X D, LIU C, ZHU L C,et al. Exploration of the development route of vertical take off and landing reusable liquid oxygen methane carrier rocket[J].Aerospace Technology, 2022(3): 71-79.
[37]吕发正, 张淼, 杨永强, 等. 130吨级液氧/煤油发动机重复使用技术研究进展[J]. 中国航天, 2023(9): 18-24.
LYU F Z, ZHANG M, YANG Y Q, et al. Research progress of 130 t liquid oxygen/kerosene engine reusable technology[J]. Aerospace China, 2023(9): 18-24.
[38]张晓军, 高玉闪, 杨永强, 等. 我国液氧/煤油发动机技术发展概述[J]. 中国航天, 2023(5): 8-15.
ZHANG X J, GAO Y S, YANG Y Q, et al. Overview of the development of liquid oxygen/kerosene engine technology in China[J]. Aerospace China, 2023(5): 8-15.
[39]高朝辉, 张普卓, 刘宇, 等. 垂直返回重复使用运载火箭技术分析[J]. 宇航学报, 2016, 37(2): 145-152.
GAO Z H, ZHANG P Z, LIU Y, et al. Analysis of vertical landing technique in reusable launch vehicle[J]. Journal of Astronautics, 2016, 37(2): 145-152.
[40]崔朋, 刘阳, 朱雄峰, 等. 重复使用液体火箭发动机典型特征分析[J]. 载人航天, 2023, 29(3): 345-353.
CUI P, LIU Y, ZHU X F, et al. Typical characteristic analysis of reusable liquid rocket engines[J]. Manned Spaceflight, 2023, 29(3): 345-353.
[41]张晓光, 董国创, 陈晖. 基于机电伺服控制的液氧/煤油发动机推力调节技术[J]. 载人航天, 2020, 26(2): 230-236.
ZHANG X G, DONG G C, CHEN H. Electromechanical thrust control technology of staged combustion LOX/kerosene rocket engine[J]. Manned Spaceflight, 2020, 26(2): 230-236.
[42]徐浩海, 李春红, 陈建华, 等. 深度变推力液氧/煤油发动机初步方案研究[J]. 载人航天, 2016, 22(2): 150-155.
XU H H, LI C H, CHEN J H, et al. Study on scheme of deep throttling liquid oxygen and kerosene engine[J]. Manned Spaceflight, 2016, 22(2): 150-155.
[43]徐浩海, 刘站国. 液氧/煤油补燃发动机系统稳定性分析[J]. 火箭推进, 2005, 31(2): 1-6.
XU H H, LIU Z G. System stability analysis of a LOX/kerosene staged combustion cycle engine[J]. Journal of Rocket Propulsion, 2005, 31(2): 1-6.
[44]康玉东, 孙冰. 液体火箭发动机推力室可重复使用技术[J]. 航空动力学报, 2012, 27(7): 1659-1664.
KANG Y D, SUN B. Reusable technology for liquid rocket engine thrust chamber[J]. Journal of Aerospace Power, 2012, 27(7): 1659-1664.
[45]冯韶伟, 马忠辉, 吴义田, 等. 国外运载火箭可重复使用关键技术综述[J]. 导弹与航天运载技术, 2014(5): 84-88.
FENG S W, MA Z H, WU Y T, et al. Survey and review on key technologies of reusable launch vehicle abroad[J]. Missiles and Space Vehicles, 2014(5): 84-88.
[46]赵阳. 从失败到复飞, 火箭犹如涅槃重生[J]. 太空探索, 2020(11): 43-45.
ZHAO Y. From failure to go around, the rocket is reborn like a nirvana[J]. Space Exploration, 2020(11): 43-45.
[47]庄方方, 汪小卫, 吴胜宝. 可重复使用运载火箭全寿命周期费用分析[J]. 导弹与航天运载技术, 2016(6): 82-85.
ZHUANG F F, WANG X W, WU S B. Life cycle cost analysis on reusable launch vehicle[J]. Missiles and Space Vehicles, 2016(6): 82-85.
[48]张楠, 孙慧娟. 低温液体火箭发动机重复使用技术分析[J]. 火箭推进, 2020, 46(6): 4-15.
ZHANG N, SUN H J. Analysis on the reusable cryogenic liquid rocket engine technology[J]. Journal of Rocket Propulsion, 2020, 46(6): 4-15.
[49]马忠辉. 可重复使用运载器热防护系统性能分析研究[D]. 西安: 西北工业大学, 2004.
MA Z H. Performance analysis of thermal protection system for reusable launch vehicle[D].Xi'an: Northwestern Polytechnical University, 2004.
[50]韩帅, 曹亚文, 邓长华, 等. 液体火箭发动机三轴向虚拟振动试验技术研究[J]. 火箭推进, 2018, 44(6): 68-74.
HAN S, CAO Y W, DENG C H, et al. Research on test technology for three-axial virtual vibration of liquid rocket engine[J]. Journal of Rocket Propulsion, 2018, 44(6): 68-74.
[51]黄道琼, 王振, 杜大华. 大推力液体火箭发动机中的动力学问题[J]. 中国科学(物理学 力学 天文学), 2019, 49(2): 19-30.
HUANG D Q, WANG Z, DU D H. Structural dynamics of the large thrust liquid rocket engines[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2019, 49(2): 19-30.
[52]李斌潮, 唐靖, 殷之平. 基于频率雨流计数法的发动机振动疲劳载荷谱编制[J]. 航空工程进展, 2021, 12(1): 24-29.
LI B C, TANG J, YIN Z P. The load spectrum compilation of engine vibration fatigue based on frequency rain-flow counting method[J]. Advances in Aeronautical Science and Engineering, 2021, 12(1): 24-29.
[53]李斌潮, 黄道琼, 王振, 等. 液体火箭发动机重复使用中的力学问题 [C] // 中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议. 昆明: 中国航天第三专业信息网, 2019.
[54]尕永婧, 李文钊, 宋乾强, 等. 重复使用液体火箭发动机可靠性评估方法[J]. 深空探测学报(中英文), 2022, 9(5): 498-505.
GA Y J, LI W Z, SONG Q Q, et al. Analysis of reliability evaluation method of reusable liquid rocket engine[J]. Journal of Deep Space Exploration, 2022, 9(5): 498-505.

Memo

Memo:
-
Last Update: 1900-01-01