|Table of Contents|

High temperature deformation behavior and constitutive model of laser additive manufactured Nickel-based superalloy(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年01期
Page:
135-146
Research Field:
目次
Publishing date:

Info

Title:
High temperature deformation behavior and constitutive model of laser additive manufactured Nickel-based superalloy
Author(s):
SU Pengcheng1 ZHAO Chang'an2 WANG Peiyan1 YUAN Kangbo1 LIAN Chenchen1
1.School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China; 2.National Key Laboratory of Aerospace Liquid Propulsion, Xi'an 710100, China
Keywords:
nickel-based superalloy constitutive model rheological behavior laser additive manufacturing finite element simulation
PACS:
V434.24
DOI:
10.3969/j.issn.1672-9374.2024.01.013
Abstract:
Tensile tests on laser additive manufactured of Nickel-based superalloy at seven temperatures are carried out. The failure mechanism and constitutive model of additive manufactured superalloy are studied through fracture analysis and data processing. The results show that the yield strength and tensile strength of Nickel-based superalloy decrease with the increase of temperature. When the temperature is higher than 673 K, the sawtooth flow phenomenon occurs in the plastic section, and the density of sawtooth decreases with the increase of temperature. There are a lot of dimples and tearing edges on the fracture surface of the specimen, exhibiting significant ductile fracture characteristics. By considering the coupling effect of strain and temperature on the plastic behavior of the material, an improved constitutive model based on J-C and Z-A models is established to fit the flow stress of the alloy. The fitting values are in good agreement with the experimental values, and the absolute values of relative errors are all less than 4%. The finite element simulation results are compared with the load-displacement curves of the test, which further proves the accuracy of the constitutive model.

References:

[1] 袁战伟,常逢春,马瑞,等.增材制造镍基高温合金研究进展[J]. 材料导报,2022,36(3): 200-208.
YUAN Z W, CHANG F C, MA R, et al. Research progress of additive manufacturing of nickel-based superalloys[J]. Materials Reports, 2022, 36(3): 200-208.
[2]李涤尘,田小永,王永信,等.增材制造技术的发展[J]. 电加工与模具,2012(S1): 20-22.
LI D C, TIAN X Y, WANG Y X, et al. Developments of additive manufacturing technology[J]. Electromachining & Mould, 2012(S1): 20-22.
[3]杨强,鲁中良,黄福享,等.激光增材制造技术的研究现状及发展趋势[J].航空制造技术,2016,59(12): 26-31.
YANG Q, LU Z L, HUANG F X, et al. Research on status and development trend of laser additive manufacturing[J]. Aeronautical Manufacturing Technology, 2016, 59(12): 26-31.
[4]倪江涛,隋阳,刘涵,等.增材制造技术在国外航天动力系统中的应用[J].导弹与航天运载技术,2022(3): 144-146.
NI J T, SUI Y, LIU H, et al. Applications of additive manufacturing in foreign aerospace propulsion systems[J]. Missiles and Space Vehicles, 2022(3): 144-146.
[5]张武昆,谭永华,高玉闪,等.液体火箭发动机增材制造技术研究进展[J].推进技术,2022,43(5): 29- 44.
ZHANG W K, TAN Y H, GAO Y S, et al. Research progress of additive manufacturing technology in liquid rocket engine[J]. Journal of Propulsion Technology, 2022, 43(5): 29- 44.
[6]谭永华,赵剑,张武昆,等.融合增材制造的液体火箭发动机创新设计方法与应用[J].火箭推进,2023,49(4): 1-16.
TAN Y H, ZHAO J, ZHANG W K, et al. Innovative design method and application of liquid rocket engine integrated additive manufacturing[J]. Journal of Rocket Propulsion, 2023, 49(4): 1-16.
[7]刘占一,张魏静,周康,等.基于增材制造技术的液氧/甲烷燃烧室身部设计及热试分析[J].火箭推进,2023,49(4): 82-89.
LIU Z Y, ZHANG W J, ZHOU K, et al. Design and hot-test analysis on LO2/methane combustion chamber body based on additive manufacturing technology[J]. Journal of Rocket Propulsion, 2023, 49(4): 82-89.
[8]GURUSAMY M M, RAO B C. On the performance of modified Zerilli-Armstrong constitutive model in simulating the metal-cutting process[J]. Journal of Manufacturing Processes, 2017, 28: 253-265.
[9]LIU H Q, CHENG Z C, YU W, et al. Deformation behavior and constitutive equation of 42CrMo steel at high temperature[J]. Metals, 2021, 11(10): 1614.
[10]杨波,吴诗豪,包振男,等.GH3128合金热变形行为与唯象本构模型[J].锻压技术,2022,47(5): 226-234.
YANG B, WU S H, BAO Z N, et al. Thermal deformation behavior and phenomenological constitutive model for GH3128 alloy[J]. Forging & Stamping Technology, 2022, 47(5): 226-234.
[11]YUAN K B, GUO W G, LI D W, et al. Influence of heat treatments on plastic flow of laser deposited Inconel 718: testing and microstructural based constitutive modeling[J]. International Journal of Plasticity, 2021, 136: 102865.
[12]GAO T J, ZHAO D, ZHANG T W, et al. Strain-rate-sensitive mechanical response, twinning, and texture features of NiCoCrFe high-entropy alloy: Experiments, multi-level crystal plasticity and artificial neural networks modeling[J]. Journal of Alloys and Compounds, 2020, 845: 155911.
[13]袁康博,姚小虎,王瑞丰,等.金属材料的率-温耦合响应与动态本构关系综述[J].爆炸与冲击,2022,42(9): 1-35.
YUAN K B, YAO X H, WANG R F, et al. A review on rate-temperature coupling response and dynamic constitutive relation of metallic materials[J]. Explosion and Shock Waves, 2022, 42(9): 1-35.
[14]YANG H, YANG J S, LI J P, et al. Simulation of resistance heating process for AZ31B magnesium alloy sheet[J]. Journal of Physics: Conference Series, 2021, 1777(1): 012052.
[15]LIN Y C, CHEN X M, LIU G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel[J]. Materials Science and Engineering: A, 2010, 527(26): 6980-6986.
[16]ZHANG H J, WEN W D, CUI H T. Behaviors of IC10 alloy over a wide range of strain rates and temperatures: experiments and modeling[J]. Materials Science and Engineering: A, 2009, 504(1/2): 99-103.
[17]ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5): 1816-1825.
[18]ZHANG H J, WEN W D, CUI H T, et al. A modified Zerilli-Armstrong model for alloy IC10 over a wide range of temperatures and strain rates[J]. Materials Science and Engineering: A, 2009, 527(1/2): 328-333.
[19]SAMANTARAY D, MANDAL S, BORAH U, et al. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J]. Materials Science and Engineering: A, 2009, 526(1/2): 1-6.
[20]CHIHAB K, ESTRIN Y, KUBIN L P, et al. The kinetics of the Portevin-Le Chatelier bands in an Al-5%Mg alloy[J]. Scripta Metallurgica, 1987, 21(2): 203-208.
[21]钱匡武,彭开萍,陈文哲.金属动态应变时效现象中的“锯齿屈服”[J].福建工程学院学报,2003,1(1): 4-8.
QIAN K W, PENG K P, CHEN W Z. Features of serrated yielding of dynamic strain aging phenomenon in metals and alloys[J]. Journal of Fujian University of Technology, 2003, 1(1): 4-8.
[22]LEBEDKINA T A, LEBYODKIN M A, CHATEAU J P, et al. On the mechanism of unstable plastic flow in an austenitic FeMnC TWIP steel[J]. Materials Science and Engineering: A, 2009, 519(1/2): 147-154.
[23]RENARD K, RYELANDT S, JACQUES P J. Characterisation of the Portevin-Le Chatelier effect affecting an austenitic TWIP steel based on digital image correlation[J]. Materials Science and Engineering: A, 2010, 527(12): 2969-2977.
[24]张琳,宋若康,屈国欣,等.镍基高温合金GH536在室温下的锯齿流变行为[J].昆明理工大学学报(自然科学版),2021,46(5): 26-31.
ZHANG L, SONG R K, QU G X, et al. Effects of loading rate on the serrated-flow behavior of GH536 superalloy at room temperature[J]. Journal of Kunming University of Science and Technology(Natural Sciences), 2021, 46(5): 26-31.
[25]WANG J J, GUO W G, GAO X S, et al. The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates[J]. International Journal of Plasticity, 2015, 65: 85-107.
[26]王建军,袁康博,张晓琼,等.第三型应变时效的提出与研究进展[J].爆炸与冲击,2021,41(5): 1-11.
WANG J J, YUAN K B, ZHANG X Q, et al. Proposition and research progress of the third-type strain aging[J]. Explosion and Shock Waves, 2021, 41(5): 1-11.
[27]SONG Y, GARCIA-GONZALEZ D, RUSINEK A. Constitutive models for dynamic strain aging in metals: Strain rate and temperature dependences on the flow stress[J]. Materials, 2020, 13(7): 1794.
[28]SONG Y, VOYIADJIS G Z. Constitutive modeling of dynamic strain aging for HCP metals[J]. European Journal of Mechanics - A/Solids, 2020, 83: 104034.
[29]RAN J Q, ZHANG G Q, CHEN G P, et al. A multi-strain-rate damage model on fracture prediction in single-point diamond turning process[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(9): 2753-2765.
[30]徐腾,邓春阳,冉家琪,等.金属的应变率效应及其动态本构研究进展[J/OL].机械工程学报: 1-8.[2023-06-05]. https://kns.cnki.net/kcms/detail/11.2187.TH.20230320.1431.002.html.
XU T,DENG C Y,RAN J Q,et al. Research progress on strain rate effect and dynamic constitutive of metals[J/OL]. Journal of Mechanical Engineering: 1-8.[2023-06-05].https://kns.cnki.net/kcms/detail/11.2187.TH.20230320.1431.002.html.
[31]赵家黎,邵坤鹏,张盼盼,等.基于J-C本物模型的2A12铝合金高速铣削特性研究[J].兰州理工大学学报, 2021,47(06): 45-49.
ZHAO J L, SHAO K P, ZHANG P P, et al.study on high-speed milling characteristics of 2A12 aluminum alloy based on J-C consitutive model[J].Journal of Lanzhou University of Technology, 2021, 47(6): 45-49.

Memo

Memo:
-
Last Update: 1900-01-01