|Table of Contents|

Optimization of fault feature extraction method for bearings of reusable rocket turbopumps(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年01期
Page:
0-
Research Field:
目次
Publishing date:

Info

Title:
Optimization of fault feature extraction method for bearings of reusable rocket turbopumps
Author(s):
WANG Delong1 WANG Wei2 JIN Lu2 WANG Yankai1
1. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710129, China; 2.Xi'an Institute of Aerospace Propulsion, Xi'an 710100, China
Keywords:
turbopump rolling bearing envelope spectrum singular value decomposition fault diagnosis
PACS:
V434.21
DOI:
10.3969/j.issn.1672-9374.2024.01.015
Abstract:
Turbo pump bearings are the key to reusable rockets. Therefore, it is very important to extract the bearing fault characteristic frequency effectively to carry out fault diagnosis. Singular value decomposition(SVD)and envelope spectrum demodulation are combined to extract the fault features of rocket turbopump bearings. By processing and analyzing the fault data of the bearing's inner ring, outer ring and rolling element, the results show that compared with the traditional envelope spectrum demodulation method, the improved method has significantly improved the fault feature extraction effect for the data with a lot of noise in the signal. Compared with traditional envelope spectrum demodulation, the relative amplitudes of three kinds of fault low frequency characteristic frequencies extracted by this method are improved. At the same time, it can effectively reduce the interference of high frequency noise. Especially in the high frequency region, characteristic frequency can still be seen more obviously, while the high frequency region of the traditional envelope spectrum demodulation method is basically covered by noise. Through calculation, the signal-to-noise ratio of the signal is improved by more than 60 dB.

References:

[1] 马帅, 郭健鑫, 周磊, 等. 固体火箭发动机技术发展综述[J]. 火箭推进, 2023, 49(2): 1-14.
MA S, GUO J X, ZHOU L, et al. Review on technology development of solid rocket motor[J]. Journal of Rocket Propulsion, 2023, 49(2): 1-14.
[2]郑雄, 杨勇, 姚世东, 等. 法尔肯9可重复使用火箭发展综述[J]. 导弹与航天运载技术, 2016(2): 39-46.
ZHENG X, YANG Y, YAO S D, et al. Survey and review on development of falcon 9 reusable rocket[J]. Missiles and Space Vehicles, 2016(2): 39-46.
[3]姚尚鹏, 黄红, 赵佳敏, 等. 涡轮泵典型故障仿真与辨识系统设计[J]. 火箭推进, 2023, 49(3): 96-104.
YAO S P, HUANG H, ZHAO J M, et al. Typical fault simulation and identification system design for turbopump[J]. Journal of Rocket Propulsion, 2023, 49(3): 96-104.
[4]李军星,朱文进,邱明,等.基于EM-IKF协同算法的滚动轴承剩余寿命预测[J/OL].航空动力学报,[2023-09-27].https://doi.org/10.13224/j.cnki.jasp.20230251.
LI J X, ZHU W J, QIU M, et al. Remaining life prediction of rolling bearings based on an EM-IKF collab orative algorithm[J/OL]. Journal of Aerospace Power.[2023-09-27].https://doi.org/10.13224/j.cnki.jasp.20230251.
[5]王国彪, 何正嘉, 陈雪峰, 等. 机械故障诊断基础研究“何去何从”[J]. 机械工程学报, 2013, 49(1): 63-72.
WANG G B, HE Z J, CHEN X F, et al. Basic research on machinery fault diagnosis-what is the prescription[J]. Journal of Mechanical Engineering, 2013, 49(1): 63-72.
[6]赵志宏. 基于振动信号的机械故障特征提取与诊断研究[D]. 北京: 北京交通大学, 2012.
ZHAO Z H. Research on vibration signal based machinery fault feature extraction and diagnosis[D].Beijing: Beijing Jiaotong University, 2012.
[7]李珊珊. 基于冲击脉冲法的便携式轴承故障检测仪的设计与改进[J]. 仪表技术与传感器, 2014(4): 106-107.
LI S S. Design and improvement of portable bearing fault detector based on shock pulse method[J]. Instrument Technique and Sensor, 2014(4): 106-107.
[8]RANDALL R B. A history of cepstrum analysis and its application to mechanical problems[J]. Mechanical Systems and Signal Processing, 2017, 97: 3-19.
[9]TONG S G, FU Z L, TONG Z M, et al. Fault diagnosis for gearboxes based on Fourier decomposition method and resonance demodulation[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2023, 24(5): 404-419.
[10]GAO H Z, LIANG L, CHEN X G, et al. Feature extraction and recognition for rolling element bearing fault utilizing short-time Fourier transform and non-negative matrix factorization[J]. Chinese Journal of Mechanical Engineering, 2015, 28(1): 96-105.
[11]何正嘉, 袁静, 訾艳阳. 机械故障诊断的内积变换原理与应用[M]. 北京: 科学出版社, 2012.
HE Z J, YUAN J, ZI Y Y. Principle and application of inner product transformation in mechanical fault diagnosis[M].Beijing: Science Press,2012.
[12]张振海, 王维庆, 王海云, 等. 基于改进小波包的风电机组齿轮箱复合故障特征提取研究[J]. 太阳能学报, 2022, 43(9): 331-336.
ZHANG Z H, WANG W Q, WANG H Y, et al. Research on composite fault feature extraction of wind turbine gearbox based on improved wavelet packet[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 331-336.
[13]YAN R Q, GAO R X, CHEN X F. Wavelets for fault diagnosis of rotary machines: a review with applications[J]. Signal Processing, 2014, 96: 1-15.
[14]范文健, 毛万鑫, 吴疆. 车辆加速度信号的EMD和IIR滤波联合降噪方法[J]. 振动与冲击, 2021, 40(20):307-312.
FAN W J, MAO W X, WU J. Combined denoising method of vehicle acceleration signal based on EMD and IIR fil-tering[J]. Journal of Vibration and Shock, 2021, 40(20): 307-312.
[15]LEI Y G, LIN J, HE Z J, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2013, 35(1/2): 108-126.
[16]GOLAFSHAN R, YUCE SANLITURK K. SVD and Hankel matrix based de-noising approach for ball bearing fault detection and its assessment using artificial faults[J]. Mechanical Systems and Signal Processing, 2016, 70/71: 36-50.
[17]陈恩利, 张玺, 申永军, 等. 基于SVD降噪和盲信号分离的滚动轴承故障诊断[J]. 振动与冲击, 2012, 31(23): 185-190.
CHEN E L, ZHANG X, SHEN Y J, et al. Fault diagnosis of rolling bearings based on SVD denoising and blind signals separation[J]. Journal of Vibration and Shock, 2012, 31(23): 185-190.
[18]尹进田, 唐杰, 刘丽, 等. 参数同步优化随机共振在牵引传动系统早期微弱故障诊断中的应用[J]. 振动与冲击, 2021, 40(17): 234-240.
YIN J T, TANG J, LIU L, et al. Application of parameter synchronous optimization stochastic resonance in early weak fault diagnosis of traction drive system[J]. Journal of Vibration and Shock, 2021, 40(17): 234-240.
[19]谯自健, 束学道. 非对称势诱导随机共振增强机械重复瞬态提取[J]. 机械工程学报, 2021, 57(23): 160-168.
QIAO Z J, SHU X D. Stochastic resonance induced by asymmetric potentials enhanced mechanical repetitive transient extraction[J]. Journal of Mechanical Engineering, 2021, 57(23): 160-168.
[20]朱娟娟, 高丙朋, 王维庆. 基于随机共振的轴承微弱故障信号检测[J]. 轴承, 2021(12): 43-48.
ZHU J J, GAO B P, WANG W Q. Weak fault signal detection of bearings based on stochastic resonance[J]. Bearing, 2021(12): 43-48.

Memo

Memo:
-
Last Update: 1900-01-01