[1] 于达仁, 乔磊, 蒋文嘉, 等. 中国电推进技术发展及展望[J]. 推进技术, 2020, 41(1): 1-11.
YU D R, QIAO L, JIANG W J, et al. Development and prospect of electric propulsion technology in China[J]. Journal of Propulsion Technology, 2020, 41(1): 1-11.
[2]任军学, 刘宇, 王一白. 可变比冲磁等离子体火箭原理与研究进展[J]. 火箭推进, 2007, 33(3): 36-42.
REN J X, LIU Y, WANG Y B. Principle and research progress of variable specific impulse magnetoplasma rocket[J]. Journal of Rocket Propulsion, 2007, 33(3): 36-42.
[3]CHANG F R, FISHER J L. A supersonic gas target for a bundle divertor plasma[J]. Nuclear Fusion, 1982, 22(8): 1003-1013.
[4]DÍAZ F R C. Research status of the variable specific impulse magnetoplasma rocket[J]. Fusion Technology, 1999, 35(1): 87-93.
[5]BERING E, BRUKARDT M, SQUIRE J, et al. Recent improvements in ionization costs and ion cyclotron heating efficiency in the VASMIR engine[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2006.
[6]BERING E A, DÍAZ F R C, SQUIRE J P, et al. Observations of single-pass ion cyclotron heating in a trans-sonic flowing plasma[J]. Physics of Plasmas, 2010, 17(4): 043509.
[7]BERING E A, GIAMBUSSO M, CARTER M, et al. Using VASIMR for the proposed Europa mission[C]//AIAA SPACE 2014 Conference and Exposition. Reston, Virginia: AIAA, 2014.
[8]BERING E, LONGMIER B, SQUIRE J, et al. Performance measurements and technology demonstration of the VASIMR VX-200[C]//AIAA SPACE 2010 Conference & Exposition. Reston, Virginia: AIAA, 2010.
[9]SQUIRE J P, CARTER M D, FRANKLIN R. Advances in duration testing of the VASIMR VX-200SS system[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference.USA:Salt Lake City, 2016.
[10]GIAMBUSSO M, CARTER M D, SQUIRE J P. Progress in VASIMR VX-200SS plasma testing program[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference.Reston, Virginia: AIAA, 2017.
[11]SQUIRE J P, CARTER M, DIAZ F C, et al. Run-time accumulation testing of the 100 kW VASIMR VX-200SS device[C]//2018 Joint Propulsion Conference. Reston, Virginia: AIAA, 2018.
[12]SQUIRE J P, CARTER M, CHANG DIAZ F R, et al. Steady-state testing at 100 kW in the VASIMR VX-200SS project[C]//AIAA Propulsion and Energy 2019 Forum. Reston, Virginia: AIAA, 2019.
[13]DÍAZ F R C, GIAMBUSSO M, CORRIGAN A M C. Recent progress on the VASIMR engine[C]//37th International Electric Propulsion Conference. USA: Cambridge, 2022.
[14]杨振宇, 曹亚文, 范威, 等. 磁等离子体发动机中离子回旋共振天线参数优化[J]. 推进技术, 2022, 43(4): 417-426.
YANG Z Y, CAO Y W, FAN W, et al. Parameter optimization of ion cyclotron resonance antenna in magnetoplasma rocket engine[J]. Journal of Propulsion Technology, 2022, 43(4): 417-426.
[15]孙斌, 赵杨, 魏建国, 等. 高功率螺旋波等离子体诊断试验研究[J]. 推进技术, 2019, 40(3): 707-713.
SUN B, ZHAO Y, WEI J G, et al. Plasma diagnostics of a high power Helicon source[J]. Journal of Propulsion Technology, 2019, 40(3): 707-713.
[16]BREIZMAN B N, AREFIEV A V. Single-pass ion cyclotron resonance absorption[J]. Physics of Plasmas, 2001, 8(3): 907-915.
[17]ILIN A, DIAZ F C, SQUIRE J, et al. Plasma heating simulation in the VASIMR system[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2005.
[18]ILIN A V, CHANG DÍAZ F R, SQUIRE J P, et al. Improved simulation of the ICRF waves in the VASIMR plasma[J]. Computer Physics Communications, 2004, 164(1/2/3): 251-257.
[19]VENTZEK P L G, HOEKSTRA R J, KUSHNER M J. Two-dimensional modeling of high plasma density inductively coupled sources for materials processing[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1994, 12(1): 461-477.
[20]吴明阳.电推进中螺旋波放电和离子回旋共振能化的研究[D].北京: 北京大学, 2021.
[21]NAMIKI T. A new FDTD algorithm based on alternating-direction implicit method[J]. IEEE Transactions on Microwave Theory Techniques, 1999, 47(10): 2003-2007.
[22]ZHEN F H, CHEN Z Z, ZHANG J Z. Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method[J]. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(9): 1550-1558.
[23]赵转转. 感性耦合放电中离子能量和角度分布的数值模拟研究[D]. 大连: 大连理工大学, 2019.
ZHAO Z Z. Numerical simulation of ion energy and angle distribution in inductively coupled discharge[D].Dalian: Dalian University of Technology, 2019.
[24]BORIS J P. LCPFCT: a flux-corrected transport algorithm for solving generalized continuity equations [R]. Washington D C: NRL, 1993.
[25]ELLINGBOE A R, BOSWELL R W. Capacitive, inductive and helicon-wave modes of operation of a Helicon plasma source[J]. Physics of Plasmas, 1996, 3(7): 2797-2804.
[26]SHAMRAI K P, TARANOV V B. Volume and surface rf power absorption in a Helicon plasma source[J]. Plasma Sources Science and Technology, 1996, 5(3): 474-491.