[1] FREY M, MAKOWKA K, AICHNER T. The TICTOP nozzle: a new nozzle contouring concept[J]. CEAS Space Journal, 2017, 9(2): 175-181.
[2]HOLLOWAY J, LIMERICK C. The challenge of reusable, single stage to orbit propulsion[C]//Aerospace Design Conference. Reston, Virginia: AIAA, 1993.
[3]刘昌国, 邱金莲, 陈明亮. 液体火箭发动机复合材料喷管延伸段研究进展[J]. 火箭推进, 2019, 45(4): 1-8.
LIU C G, QIU J L, CHEN M L. Research progress of composites nozzle extension for liquid rocket engine[J]. Journal of Rocket Propulsion, 2019, 45(4): 1-8.
[4]ÖSTLUND J, MUHAMMAD-KLINGMANN B. Supersonic flow separation with application to rocket engine nozzles[J]. Applied Mechanics Reviews, 2005, 58(3): 143.
[5]SHI J. Rocket engine nozzle side load transient analysis methodology: a practical approach[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, Virginia: AIAA, 2005.
[6]STARK R H, GENIN C. Scaling effects on side load generation in subscale rocket nozzles[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2016.
[7]WATANABE Y, SAKAZUME N, YONEZAWA K, et al. LE-7A engine nozzle flow separation phenomenon and the possibility of RSS suppression by the step inside the nozzle[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2004.
[8]HAGEMANN G, IMMICH H, VAN NGUYEN T, et al. Advanced rocket nozzles[J]. Journal of Propulsion and Power, 1998, 14(5): 620-634.
[9]杨建文, 付秀文, 刘亚洲, 等. 不同设计型面对双钟形喷管性能影响[J]. 火箭推进, 2021, 47(5): 14-21.
YANG J W, FU X W, LIU Y Z, et al. Influence on performance of dual-bell nozzle with different design contours[J]. Journal of Rocket Propulsion, 2021, 47(5): 14-21.
[10]MARTELLI E, NASUTI F, ONOFRI M. Numerical parametric analysis of dual-bell nozzle flows[J]. AIAA Journal, 2007, 45(3): 640-650.
[11]NASUTI F, ONOFRI M, MARTELLI E. Role of wall shape on the transition in axisymmetric dual-bell nozzles[J]. Journal of Propulsion and Power, 2005, 21(2): 243-250.
[12]KBAB H, SELLAM M, HAMITOUCHE T, et al. Design and performance evaluation of a dual bell nozzle[J]. Acta Astronautica, 2017, 130: 52-59.
[13]STARK R, GÉNIN C, SCHNEIDER D, et al. Ariane 5 performance optimization using dual-bell nozzle exten-sion[J]. Journal of Spacecraft and Rockets, 2016, 53(4): 743-750.
[14]FREY M, HAGEMANN G. Critical assessment of dual-bell nozzles[J]. Journal of Propulsion and Power, 1999, 15(1): 137-143.
[15]GENIN C, STARK R H, SCHNEIDER D. Transitional behavior of dual bell nozzles: contour optimization[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2013.
[16]VERMA S B, STARK R, NUERENBERGER-GENIN C, et al. Cold-gas experiments to study the flow separation characteristics of a dual-bell nozzle during its transition modes[J]. Shock Waves, 2010, 20(3): 191-203.
[17]HAGEMANN G, TERHARDT M, HAESELER D, et al. Experimental and analytical design verification of the dual-bell concept[J]. Journal of Propulsion and Power, 2002, 18(1): 116-122.
[18]刘亚洲, 李平, 陈宏玉, 等. 不同延伸段压力分布的双钟形喷管设计[J]. 航空动力学报, 2022, 37(2): 424-432.
LIU Y Z, LI P, CHEN H Y, et al. Design of dual-bell nozzles with different extension pressure distributions[J]. Journal of Aerospace Power, 2022, 37(2): 424-432.
[19]SCHNEIDER D, GÉNIN C. Numerical investigation of flow transition behavior in cold flow dual-bell rocket nozzles[J]. Journal of Propulsion and Power, 2016, 32(5): 1212-1219.
[20]SCHNEIDER D, STARK R, GÉNIN C, et al. Active control of dual-bell nozzle operation mode transition by film cooling and mixture ratio variation[J]. Journal of Propulsion and Power, 2019, 36(1): 47-58.
[21]GROSS A, WEILAND C. Numerical simulation of separated cold gas nozzle flows[J]. Journal of Propulsion and Power, 2004, 20(3): 509-519.