|Table of Contents|

Numerical simulation on cryogenic cavitating flow characteristics of regulating valve(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年02期
Page:
98-106
Research Field:
目次
Publishing date:

Info

Title:
Numerical simulation on cryogenic cavitating flow characteristics of regulating valve
Author(s):
LIANG Wendong ZHAO Mengyun LIU Bo GUO Wenjun
Beijing Aerospace Propulsion Institute, Beijing 100076, China
Keywords:
regulating valve liquid oxygen cavitation model thermodynamic effect
PACS:
V434
DOI:
10.3969/j.issn.1672-9374.2024.02.010
Abstract:
Distributions of flow field and the characteristics of liquid oxygen cavitating flow inside the regulating valve of a liquid rocket engine are investigated by the numerical simulation method. The accuracy of the established model is verified by comparing the simulation results with the experimental data. Then, the evolution laws of pressure, temperature, vortex and cavity structures under different operating conditions are analyzed. The results indicate that the pressure undergoes five stages including slow decrease, sharp decrease, sharp increase, slow decrease and subsequent increase, when liquid oxygen flows through the ball valve. Notably, a significant Q structure is observed inside the flow channel. In addition, the cavitation number of room-temperature water is greater than that of liquid oxygen under the same pressure difference. The cavity structure initially grows at the valve inlet and gradually move towards the interior of the flow channel as the cavitation number decreases. For room temperature water, the critical cavitation number is around 1.38. Furthermore, the development of cavity structure is affected by both the cavitation number and thermodynamic effects. When the temperature of liquid oxygen rises from 95 K to 100 K, the cavitation number decreases and the nominal temperature drop increases. In this case, the thermodynamic effect controls the evolution of the cavitating flows and suppresses the development of cavity.

References:

[1] 王博, 蒋平, 赵骞, 等. 氢氧火箭发动机组件研制阶段可靠性技术综述[J]. 火箭推进, 2021, 47(2): 1-8.
WANG B, JIANG P, ZHAO Q, et al. Review on reliability technology of hydrogen-oxygen rocket engine components in development[J]. Journal of Rocket Propulsion, 2021, 47(2): 1-8.
[2]孙纪国, 郑孟伟, 龚杰峰, 等. 220 tf补燃循环氢氧发动机研制进展[J]. 火箭推进, 2022, 48(2): 11-20.
SUN J G, ZHENG M W, GONG J F, et al. Development of staged combustion cycle LH2/LOX engine with 220 tf thrust[J]. Journal of Rocket Propulsion, 2022, 48(2): 11-20.
[3]李东, 王珏, 陈士强. 长征五号运载火箭动力系统总体技术分析[J]. 推进技术, 2021, 42(7): 1441-1448.
LI D, WANG J, CHEN S Q. Key technology analysis of CZ-5 launch vehicle propulsion system[J]. Journal of Propulsion Technology, 2021, 42(7): 1441-1448.
[4]贺杰.液压调节阀空化流场特性研究[D].北京:中国矿业大学,2019.
HE J. Investigation of cavitation flow characteristics in the regulating valve[D]. Beijing: China University of Mining and Technology, 2019.
[5]张希恒, 王宇, 张孙力. 基于动网格的调节阀空化流场数值模拟研究[J]. 化工机械, 2021, 48(4): 542-545.
ZHANG X H, WANG Y, ZHANG S L. Numerical simulation and research of cavitation flow field in control valve based on dynamic mesh[J]. Chemical Engineering & Machinery, 2021, 48(4): 542-545.
[6]TABRIZI A S, ASADI M, XIE G, et al. Computational fluid-dynamics-based analysis of a ball valve performance in the presence of cavitation[J]. Journal of Engineering Thermophysics, 2014, 23(1): 27-38.
[7]黄彪, 吴钦, 王国玉. 非定常空化流动研究现状与进展[J]. 排灌机械工程学报, 2018, 36(1): 1-14.
HUANG B, WU Q, WANG G Y. Progress and prospects of investigation into unsteady cavitating flows[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(1): 1-14.
[8]项乐, 李春乐, 许开富, 等. 诱导轮超同步旋转空化传播机理[J]. 火箭推进, 2022, 48(2): 76-85.
XIANG L, LI C L, XU K F, et al. Inducer super-synchronous rotating cavitation propagation mechanism[J]. Journal of Rocket Propulsion, 2022, 48(2): 76-85.
[9]王维彬, 巩岩博. 50吨级氢氧火箭发动机的设计与研制[J]. 推进技术, 2021, 42(7): 1458-1465.
WANG W B, GONG Y B. Design and development of 50-ton LOX/LH2 rocket engine[J]. Journal of Propulsion Technology, 2021, 42(7): 1458-1465.
[10]孙纪国, 何学青, 阳代军, 等. 大推力氢氧发动机关键制造技术[J]. 火箭推进, 2022, 48(2): 117-126.
SUN J G, HE X Q, YANG D J, et al. Key manufacturing technology for large thrust LH2/LOX cycle engine[J]. Journal of Rocket Propulsion, 2022, 48(2): 117-126.
[11]郑孟伟, 岳文龙, 孙纪国, 等. 我国大推力氢氧发动机发展思考[J]. 宇航总体技术, 2019(2): 12-17.
ZHENG M W, YUE W L, SUN J G, et al. Discussion on Chinese large-thrust hydrogen/oxygen rocket engine development[J]. Astronautical Systems Engineering Technology, 2019(2): 12-17.
[12]郑大勇, 颜勇, 孙纪国. 液氧甲烷发动机重复使用关键技术发展研究[J]. 导弹与航天运载技术, 2018(2): 31-35.
ZHENG D Y, YAN Y, SUN J G. Development study of key reusable technology for LOX/methane engine[J]. Missiles and Space Vehicles, 2018(2): 31-35.
[13]梁文栋, 王国玉, 黄彪, 等. 液氮空化流动的实验和数值计算研究[J]. 工程热物理学报, 2019, 40(10): 2299-2304.
LIANG W D, WANG G Y, HUANG B, et al. Experimental and numerical simulation of cavitating flows in liquid nitrogen[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2299-2304.
[14]LIANG W D, CHEN T R, WANG G Y, et al. Experimental investigations on transient dynamics of cryogenic cavitating flows under different free-stream conditions[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121537.
[15]SARO SDY L R, ACOSTA A J. Note on observations of cavitation in different fluids[J]. Journal of Basic Engineering, 1961, 83(3): 399-400.
[16]CHEN T R, CHEN H, LIU W C, et al. Unsteady characteristics of liquid nitrogen cavitating flows in different thermal cavitation mode[J]. Applied Thermal Engineering, 2019, 156: 63-76.
[17] RAYLEIGH L. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200): 94-98.
[18]PLESSET M S. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics, 1949, 16(3): 277-282.
[19]KUBOTA A, KATO H, YAMAGUCHI H. A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section[J]. Journal of Fluid Mechanics, 1992, 240: 59.
[20]CHEN J C, LIANG W D, HAN L, et al. Numerical investigation of compressible cryogenic cavitating flows by a modified mass transport model[J]. Physics of Fluids, 2023, 35(4): 043304.
[21]李哲, 魏志军, 张平. 燃气调压阀内流场三维数值模拟[J]. 固体火箭技术, 2007, 30(3): 210-213.
LI Z, WEI Z J, ZHANG P. 3D numerical simulation on internal flow field for pressure regulating valve of gas generator[J]. Journal of Solid Rocket Technology, 2007, 30(3): 210-213.
[22]CHERN M J, WANG C C, MA C H. Performance test and flow visualization of ball valve[J]. Experimental Thermal and Fluid Science, 2007, 31(6): 505-512.
[23]LIN Z H, LI J Y, JIN Z J, et al. Fluid dynamic analysis of liquefied natural gas flow through a cryogenic ball valve in liquefied natural gas receiving stations[J]. Energy, 2021, 226: 120376.
[24]ZHOU X, ZHI X Q, GAO X, et al. Cavitation evolution and damage by liquid nitrogen in a globe valve[J]. Journal of Zhejiang University: Science A, 2022, 23(2): 101-117.
[25]李永喜, 杨扬, 成世春, 等. 液化天然气输送系统超低温球阀介质流动仿真分析[J]. 阀门, 2023(4): 477-479.
LI Y X, YANG Y, CHENG S C, et al. Simulation analysis of medium flow of cryogenic ball valve in LNG transportation system[J]. Valve Magazine, 2023(4): 477-479.
[26]赵莹, 许健, 张强. 仿真技术在球阀特性研究中的应用[J]. 火箭推进, 2013, 39(6): 29-34.
ZHAO Y, XU J, ZHANG Q. Application of simulation technology in ball valve characteristic study[J]. Journal of Rocket Propulsion, 2013, 39(6): 29-34.

Memo

Memo:
-
Last Update: 1900-01-01