[1] 侯增祺,胡金刚. 航天器热控制技术: 原理及其应用[M]. 北京: 中国科学技术出版社, 2007.
[2]刘昌国, 赵婷, 姚锋, 等. 第二代490 N轨控发动机研制及在轨飞行验证[J]. 推进技术, 2020, 41(1): 49-57.
LIU C G, ZHAO T, YAO F, et al. Development and on-orbit flight verification of the second generation 490 N liquid apogee engine[J]. Journal of Propulsion Technology, 2020, 41(1): 49-57.
[3]邱家稳, 冯煜东, 吴春华. 航天器热控薄膜技术[M]. 北京: 国防工业出版社, 2016.
[4]GILMORE D G. Spacecraft thermal control handbook[M]. 2nd ed. El Segundo, CA: Aerospace Press, 2002.
[5]KARAM R D. Satellite thermal control for systems engineers[M]. Reston, VA: AIAA, 1998.
[6]SURESHA S, KATTI R A. Thermal sensitivity analysis of a 22 N bipropellant thruster in a spacecraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1999, 213(5): 321-335.
[7]陈阳春, 丁卫华, 朱叶茂, 等. 双组元150 N发动机头部热控组件温度适应性研究[J]. 推进技术, 2023, 44(7): 261-267.
CHEN Y C, DING W H, ZHU Y M, et al. Temperature adaptability of thermal control assembly of bipropellant 150 N engine head[J]. Journal of Propulsion Technology, 2023, 44(7): 261-267.
[8]陈阳春, 叶胜, 丁卫华, 等. 空间站核心舱俯仰机组热设计及在轨验证[J]. 推进技术, 2023, 44(3): 165-171.
CHEN Y C, YE S, DING W H, et al. Thermal design and flight verification of pitching unit in core cabin of space station[J]. Journal of Propulsion Technology, 2023, 44(3): 165-171.
[9]陈阳春, 李世恭, 胡承云. 空间站核心舱轨控机组热设计及飞行验证[J]. 火箭推进, 2022, 48(4): 59-65.
CHEN Y C, LI S G, HU C Y. Thermal design and flight verification of orbit control unit in core cabin of space station[J]. Journal of Rocket Propulsion, 2022, 48(4): 59-65.
[10]刘海娃. 载人飞船连续偏航姿态下轨控机组热控设计[J]. 火箭推进, 2018, 44(5): 10-15.
LIU H W. Thermal control design of divert thruster unit in manned spacecraft under continuous yaw attitude[J]. Journal of Rocket Propulsion, 2018, 44(5): 10-15.
[11]张暘, 赵剑锋, 韩崇巍, 等. 远地点发动机热防护模型[J]. 航空动力学报, 2021, 36(8): 1594-1604.
ZHANG Y, ZHAO J F, HAN C W, et al. Thermal protection model of apogee engine[J]. Journal of Aerospace Power, 2021, 36(8): 1594-1604.
[12]张暘, 赵剑锋, 韩崇巍, 等. 航天器用低温多层隔热性能计算方程[J]. 中国空间科学技术, 2021, 41(2): 63-70.
ZHANG Y, ZHAO J F, HAN C W, et al. Thermal performance equation of multilayer insulator for space-craft[J]. Chinese Space Science and Technology, 2021, 41(2): 63-70.
[13]张彧, 高天, 刘冈云, 等. 嫦娥五号轨道器3 000 N发动机高温隔热屏设计[J]. 上海航天(中英文), 2022, 39(S1): 27-32.
ZHANG Y, GAO T, LIU G Y, et al. Design of high temperature heat shield for 3 000 N engine of Chang'e V orbiter[J]. Aerospace Shanghai(Chinese & English), 2022, 39(S1): 27-32.
[14]CUNNINGTON G, TIEN C. A study of heat-transfer processes in multilayer insulations[C]//4th Thermophysics Conference. Reston, VA: AIAA, 1969.
[15]雷营生, 徐红艳, 谢荣建, 等. 空间用多层绝热组件隔热特性的试验研究[J]. 红外, 2018, 39(3): 13-17.
LEI Y S, XU H Y, XIE R J, et al. Experimental study of heat insulation capability of MLI assembly in space[J]. Infrared, 2018, 39(3): 13-17.
[16]李永春, 刘强, 马洪炯, 等. 真空环境中多层隔热材料的隔热性能[J]. 宇航材料工艺, 2012, 42(4): 90-92.
LI Y C, LIU Q, MA H J, et al. Thermal properties of multilayer insulation materials in vacuum[J]. Aerospace Materials & Technology, 2012, 42(4): 90-92.
[17]朱尚龙, 邓婉, 李德富, 等. 基于发动机高模试车的高温隔热屏热模型修正技术[J]. 宇航材料工艺, 2021, 51(6): 94-97.
ZHU S L, DENG W, LI D F, et al. Modification of high temperature heat shield thermal analysis model based on altitude simulated test[J]. Aerospace Materials & Technology, 2021, 51(6): 94-97.
[18]魏超, 张忠利. 深空探测发动机热环境研究[J]. 航空动力学报, 2010, 25(5): 1139-1144.
WEI C, ZHANG Z L. Investigation on thermal environment for deep-space-exploration liquid rocket engine[J]. Journal of Aerospace Power, 2010, 25(5): 1139-1144.
[19]王江, 耿宏飞, 刘炜葳, 等. 双组元25 N发动机热辐射影响研究[J]. 上海航天, 2016, 33(2): 73-77.
WANG J, GENG H F, LIU W W, et al. Research on thermal radiation effect of 25 N Bi-propellant thrusters[J]. Aerospace Shanghai, 2016, 33(2): 73-77.
[20]刘自军, 向艳超, 斯东波, 等. 嫦娥三号探测器热控系统设计与验证[J]. 中国科学: 技术科学, 2014, 44(4): 353-360.
LIU Z J, XIANG Y C, SI D B, et al. Design and verification of thermal control system for Chang'e-3 probe[J]. Scientia Sinica(Technologica), 2014, 44(4): 353-360.