|Table of Contents|

Effect of indentation length of liquid-liquid coaxial swirling injector on spray process(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年03期
Page:
42-52
Research Field:
目次
Publishing date:

Info

Title:
Effect of indentation length of liquid-liquid coaxial swirling injector on spray process
Author(s):
WANG Zhuang1 DANG Xiaorui2 HU Haifeng1 BIAN Xianggang1
1.Science and Technology on Liquid Rocket Engine Laboratory,Xi'an Aerospace Propulsion Institute, Xi'an 710100, China; 2.Xi'an Aerospace Propulsion Institute, Xi'an 710100, China
Keywords:
indentation length liquid-liquid coaxial swirling injector spray angle flow field struture numerical simulation
PACS:
V231.2
DOI:
10.3969/j.issn.1672-9374.2024.03.005
Abstract:
In order to investigate the effect of indentation length of liquid-liquid coaxial swirling inject on spray process, the detailed characteristics of the internal flow was obtained through numerical simulation, using N2O4 as the working fluid for the central nozzle and UDMH as the working fluid for the outer nozzle. Besides, the effect of the N on the spray angle was obtained. The result shows that when N<1, the spray angle increase at first and then decrease. When N>1, the spray angle increases slightly. In addition, when N=0, a low-pressure area will be formed between UDMH and N2O4 liquid film, which will make the two liquid films adsorb each other, resulting in a decrease in UDMH liquid film angle and an increase in N2O4 liquid film. And the final spray angle is an intermediate value between the outer nozzle and the central nozzle spray angle. When N>0.85, UDMH and N2O4 will mix significantly in the indentation chamber, and the deformation of the liquid film intensifies. When N>1.27, the chamber will rectify the mixed fluid, and thus the breaking distance increases.

References:

[1] 张蒙正. 液体火箭发动机喷注器雾化研究及进展[J]. 火箭推进, 1997, 23(3): 16-32.
ZHANG M Z. Research and development of atomization of injector in liquid rocket engine[J]. Journal of Rocket Propulsion, 1997, 23(3): 16-32.
[2]RIZK N K, LEFEBVRE A H. Internal flow characteristics of simplex swirl atomizers[J]. Journal of Propulsion and Power, 1985, 1(3): 193-199.
[3]岳明. 锥形液膜初始破碎雾化过程和机理研究[D]. 北京: 北京航空航天大学, 2003.
YUE M. Study on the process and mechanism of initial breakup and atomization of conical liquid film[D].Beijing: Beihang University, 2003.
[4]KUTTY S P, NARASIMHAN M, NARAYANASWANY K. Design and prediction of discharge rate, cone angle, and air core diameter of swirl chamber atomizers[C]// 1st International Conference on Liquid Atomization and Spray Systems.Tokyo:[s.n.], 1978.
[5]刘娟, 李清廉, 刘卫东, 等. 离心式喷嘴液膜破碎过程实验[J]. 推进技术, 2011, 32(4): 539-543.
LIU J, LI Q L, LIU W D, et al. Experiment on liquid sheet breakup process of pressure swirl injector[J]. Journal of Propulsion Technology, 2011, 32(4): 539-543.
[6]高琦翔, 孙虎, 王焕燃, 等. 反压对收口型离心喷嘴液膜厚度的影响[J]. 火箭推进, 2023, 49(3): 83-89.
GAO Q X, SUN H, WANG H R, et al. Effect of backpressure on liquid film thickness of close-end swirl injector[J]. Journal of Rocket Propulsion, 2023, 49(3): 83-89.
[7]SHAFAEE M, BANITABAEI S A, ASHJAEE M, et al. Effect of flow conditions on spray cone angle of a two-fluid atomizer[J]. Journal of Mechanical Science and Technology, 2011, 25(2): 365-369.
[8]张永良. 离心喷嘴雾化特性实验研究和数值模拟[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2013.
ZHANG Y L. Experiment and numerical studies on the atomization of a pressure atomizer[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2013.
[9]陈富鑫. 喷口结构参数对离心喷嘴内部流动特性的影响研究[D]. 南京: 南京航空航天大学, 2021.
CHEN F X. Investigation on the internal flow characteristics of pressure swirl atomizer with different spout geometric parameters[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021.
[10]SEOL J H, HAN P G, JEONG W H, et al. Recess effects on spray characteristics of swirl coaxial injectors[J]. International Journal of Aeronautical and Space Sciences, 2003, 4(1): 26-33.
[11]RONCEROS R J R, PIMENTA A P, LESSA J S, et al. An improved theoretical formulation for Sauter mean diameter of pressure-swirl atomizers using geometrical parameters of atomization[J]. Propulsion and Power Research, 2022, 11(2): 240-252.
[12]RICARD G, MACHICOANE N, OSUNA-OROZCO R, et al. Role of convective acceleration in the interfacial instability of liquid-gas coaxial jets[J]. Physical Review Fluids, 2021, 6(8): 084302.
[13]REN Y J, GUO K K, ZHAO J F, et al. Numerical investigation of spray self-pulsation characteristics of liquid-centered swirl coaxial injector with different recess lengths[J]. International Journal of Multiphase Flow, 2021, 138: 103592.
[14]CAO P J, BAI X, LI Q L, et al. Experimental and theoretical study on the break phenomenon of self-pulsation for liquid-centered swirl coaxial injectors[J]. Journal of Zhejiang University: Science A, 2022, 23(2): 140-155.
[15]白晓. 气液同轴离心式喷嘴自激振荡过程及对喷雾燃烧特性的影响研究[D]. 长沙: 国防科技大学, 2020.
BAI X. The self-pulsation and its effects on spray combustion characteristics for gas-liquid swirl coaxial injector[D]. Changsha: National University of Defense Technology, 2020.
[16]白晓, 曹鹏进, 李清廉, 等. 气液同轴离心式喷嘴非定常喷雾燃烧过程研究进展[J]. 推进技术, 2022, 43(12): 15-37.
BAI X, CAO P J, LI Q L, et al. Research progress on unsteady spray combustion process of gas-liquid swirl coaxial injectors[J]. Journal of Propulsion Technology, 2022, 43(12): 15-37.
[17]KIM D, HAN P, IM J H, et al. Effect of recess on the spray characteristics of liquid-liquid swirl coaxial injectors[J]. Journal of Propulsion and Power, 2007, 23(6): 1194-1203.
[18]KIM D J,IM J H,HAN P G,et al. Spray characteristics of a liquid-liquid swirl coaxial injector(Part I): effect of injection condition [Z]. 2006.
[19]ALVES A, LACAVA P T, MARTINS C A. Effects of the number of tangential passages on spray characteristics of a bipropellant atomizer[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2014, 36(3): 583-590.
[20]AHN K, HAN Y M, SEO S, et al. Effects of injector recess and chamber pressure on combustion characteristics of liquid-liquid swirl coaxial injectors[J]. Combustion Science and Technology, 2010, 183(3): 252-270.
[21]EBERHART C, LINEBERRY D, MOSER M. Effects of variable chamber pressure on swirl coaxial injection: A cold flow study[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 2010.
[22]盛立勇. 液液同轴离心式喷嘴振荡特性研究[D]. 长沙: 国防科技大学, 2019.
SHENG L Y. Research on the oscillation characteristics of liquid-liquid swirl coaxial injector[D]. Changsha: National University of Defense Technology, 2019.
[23]盛立勇, 李清廉, 白晓, 等. 液液同轴离心式喷嘴喷雾过程研究进展[J]. 火箭推进, 2020, 46(3): 1-10.
SHENG L Y, LI Q L, BAI X, et al. Review on spray process of liquid-liquid coaxial swirl injector[J]. Journal of Rocket Propulsion, 2020, 46(3): 1-10.
[24]林家源, 王凯峰, 刘赵淼. 缩进长度对双路离心式喷嘴主油路雾化效果的影响[C]//北京力学会第二十四届学术年会会议论文集. 北京:[s.n.], 2018.

Memo

Memo:
-
Last Update: 1900-01-01