|Table of Contents|

Dynamic simulation of factors affecting the adjustment accuracy for adjustable cavitation venturi(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年03期
Page:
65-74
Research Field:
目次
Publishing date:

Info

Title:
Dynamic simulation of factors affecting the adjustment accuracy for adjustable cavitation venturi
Author(s):
TIAN Liang12 HAN Xu12 YUAN Jianzhou12 ZHU Shaohua3
1.College of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; 2.Hebei Key Laboratory of Geothermal Energy Utilization Technology, Cangzhou 062550, China; 3.College of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
Keywords:
adjustable cavitation Venturi adjustment accuracy numerical simulation dynamic grid adjusting cone eccentricity reverse motion
PACS:
V432
DOI:
10.3969/j.issn.1672-9374.2024.03.007
Abstract:
The factors affecting the adjustment accuracy of the tunable cavitation Venturi are studied for engineering application. The flow linearity and internal flow characteristics of the designed tunable cavitation Venturi are simulated by using the Schnerr-Sauer mixed fluid hole model in FLUENT under dynamic conditions. The influence of eccentric-reverse motion on the adjustment accuracy is also studied. The results show that the length of the cavitation section increases and the precision decreases because the initial movement of the adjustable cavitation cone does not enter the throat. The linearity of flow decreases at the initial stage due to the influence of throttling surface, and the linearity is the best and the accuracy is the highest within the range of 12% to 70% of percentage flow. The influence of flow rate on the accuracy of cavitation Venturi is less than 5%. When the eccentricity of the adjusting cone is 0.02 mm and 0.05 mm, the accuracy of adjusting the length of the cavitation zone is less than 20%, but it is increased to 40% when the eccentricity is 0.10 mm. At this time, the cavitation zone in the gradually expanding section will shift, and the pressure distribution is uneven, and the upper side increases while the lower side decreases, resulting in pressure oscillation. The influence of different eccentricity values on the accuracy of throat flow regulation is less than 4%. Because the initial cavitation section length is too short, the cavitation characteristics are weakened, the change rate of the cavitation zone is slowed down, and the accuracy of flow regulation is less than 3%.

References:

[1] 陈启智. 双组元变推力液体火箭发动机的比冲特性[J]. 火箭推进, 2001, 27(1): 1-6.
CHEN Q Z. Impulse characteristics of bipropellant variable-thrust liquid rocket engine[J]. Journal of Rocket Propulsion, 2001, 27(1): 1-6.
[2]石璞, 朱国强, 李进贤, 等. 液体火箭发动机针栓喷注器雾化燃烧技术研究进展[J]. 火箭推进, 2020, 46(4): 1-13.
SHI P, ZHU G Q, LI J X, et al. Advances in atomized combustion technology research of pintle injector for liquid rocket engines[J]. Journal of Rocket Propulsion, 2020, 46(4): 1-13.
[3]FRANCJ P,MICHEL J M.Fundamentals of cavita-tion[M].Berlin:Springer,2006.
[4]张育林. 变推力液体火箭发动机及其控制技术[M]. 北京: 国防工业出版社, 2001.
[5]王智勇, 张晓冬, 杨会中. 文丘里管中空化流场的数值模拟[J]. 计算机与应用化学, 2006, 23(10): 939-942.
WANG Z Y, ZHANG X D, YANG H Z. Numerical simulation of cavitation flow field in the Venturi[J]. Computers and Applied Chemistry, 2006, 23(10): 939-942.
[6]张小斌, 曹潇丽, 邱利民, 等. 液氧文氏管汽蚀特性计算流体力学研究[J]. 化工学报, 2009, 60(7): 1638-1643.
ZHANG X B, CAO X L, QIU L M, et al. CFD study on cavitation of liquid oxygen in Venturi[J]. CIESC Journal, 2009, 60(7): 1638-1643.
[7]唐虎, 张金容, 韩红伟. 汽蚀管流场数值模拟[J]. 火箭推进, 2013, 39(4): 52-55.
TANG H, ZHANG J R, HAN H W. Numerical simulation of Venturi flow field[J]. Journal of Rocket Propulsion, 2013, 39(4): 52-55.
[8]唐虎, 毕勤成. 文丘里管汽蚀实验研究[J]. 火箭推进, 2015, 41(5): 54-60.
TANG H, BI Q C. Experimental study of cavitation in Venturi[J]. Journal of Rocket Propulsion, 2015, 41(5): 54-60.
[9]梁涛, 崔朋, 成鹏, 等. 压比对文氏管汽蚀动态过程演变的影响[J]. 航空学报, 2022, 43(3): 125212.
LIANG T, CUI P, CHENG P, et al. Influence of pressure ratio on evolution of cavitation dynamic process in Venturi tube[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 125212.
[10]韩泉东. 空间变推力液体火箭发动机流量调节及燃烧过程仿真研究[D]. 长沙: 国防科学技术大学, 2006.
HAN Q D. Numerical study on flow control and combustion process of variable thrust liquid propellant space rocket engine[D]. Changsha: National University of Defense Technology, 2006.
[11]沈赤兵, 李清廉, 罗世彬, 等. 三组元火箭发动机推力室试验研究[J]. 火箭推进, 2006, 32(5): 1-6.
SHEN C B, LI Q L, LUO S B, et al. Experimental research on the thrust chamber of tripropellant rocket engine[J]. Journal of Rocket Propulsion, 2006, 32(5): 1-6.
[12]陶玉静, 田章福, 王振国. 低温流量控制系统试验研究[J]. 国防科技大学学报, 2006, 28(4): 6-9.
TAO Y J, TIAN Z F, WANG Z G. Experiment study of the mass flow control system[J]. Journal of National University of Defense Technology, 2006, 28(4): 6-9.
[13]陶玉静, 田章福, 王振国. 用于火箭发动机的低温流量控制系统建模及动态特性分析[J]. 弹箭与制导学报, 2006, 26(S7): 591-594.
TAO Y J, TIAN Z F, WANG Z G. Modeling and dynamic analysis of the mass flow control system used for rocket engine[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(S7): 591-594.
[14]曹东刚, 何国强, 潘宏亮, 等. 三种空穴模型在可调汽蚀文氏管数值模拟中的对比研究[J]. 西北工业大学学报, 2013, 31(4): 596-601.
CAO D G, HE G Q, PAN H L, et al. Comparative investigation among three cavitation models for simulating cavitating venturi[J]. Journal of Northwestern Polytechnical University, 2013, 31(4): 596-601.
[15]高汉如, 李晓滨. 线性可调汽蚀文氏管研究[J]. 国防科技大学学报, 1983, 5(4): 1-16.
GAO H R, LI X B. On linear throttling cavitation Venturi[J]. Journal of National University of Defense Technology, 1983, 5(4): 1-16.
[16]高汉如. 液体火箭发动机变推力用流量可调汽蚀文氏管设计中几个问题的分析[J]. 工学学报, 1978(2): 43-63.
GAO H R. Analysis of several problems in the design of cavitation venturi with adjustable flow rate for variable thrust of liquid rocket engine[J]. Journal of National University of Defense Technology, 1978(2): 43-63.
[17]唐飞, 李永, 耿永兵, 等. 线性可调汽蚀文氏管设计与数值仿真研究[J]. 空间控制技术与应用, 2013, 39(6): 12-16.
TANG F, LI Y, GENG Y B, et al. On design and numerical simulation for linear throttling cavitation Venturi[J]. Aerospace Control and Application, 2013, 39(6): 12-16.
[18]谭广, 田辉, 张源俊, 等. 一种流量调节器的设计与试验研究[J]. 推进技术, 2022, 43(9): 213-221.
TAN G, TIAN H, ZHANG Y J, et al. Design and experimental study of a flow regulator[J]. Journal of Propulsion Technology, 2022, 43(9): 213-221.
[19]液体火箭发动机汽蚀文氏管通用规范: QJ 1783A—1996[S].北京:中国航天工业总公司,1996.
[20]成鹏, 李清廉, 张新桥, 等. 线性可调音速喷嘴工作特性仿真[J]. 国防科技大学学报, 2015, 37(6): 48-53.
CHENG P, LI Q L, ZHANG X Q, et al. Simulation on the performance of linear throttleable sonic nozzle[J]. Journal of National University of Defense Technology, 2015, 37(6): 48-53.
[21]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004.
[22]SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238.
[23]SCHNERR G H,SAUER J. Physical and numerical modeling of unsteady cavitation dynamics[C]//4th International Conference on Multiphase Flow. New Orleans, LA:[s.n.],2001.
[24]朱子勇, 刘红彤, 孙万民. 汽蚀文氏管内部空穴两相流动数值计算与试验比较[J]. 导弹与航天运载技术, 2014(1): 75-81.
ZHU Z Y, LIU H T, SUN W M. Comparison between the numerical simulation and test result for two-phase flow in the internal cavity of cavitating Venturi[J]. Missiles and Space Vehicles, 2014(1): 75-81.
[25]TIAN H, ZENG P, YU N J, et al. Application of variable area cavitating venturi as a dynamic flow controller[J]. Flow Measurement and Instrumentation, 2014, 38: 21-26.

Memo

Memo:
-
Last Update: 1900-01-01