|Table of Contents|

Static structural analysis of pipeline structures of hydrogen/oxygen rocket engine considering structural integral deformation(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年03期
Page:
83-89
Research Field:
目次
Publishing date:

Info

Title:
Static structural analysis of pipeline structures of hydrogen/oxygen rocket engine considering structural integral deformation
Author(s):
LIU Kaicheng12 LIU Zhaoyu12 WANG Xinjun12 ZHENG Mengwei12 LI Jing3
1.Beijing Aerospace Propulsion Institute, Beijing 100076, China; 2.Laboratory of Cryogenic Liquid Propulsion Technology, Beijing 100076, China; 3.Beijing Institute of Structure and Environment Engineering, Beijing 100076, China
Keywords:
hydrogen/oxygen rocket engine pipeline structures static structural analysis integral deformation submodel
PACS:
V414.1
DOI:
10.3969/j.issn.1672-9374.2024.03.009
Abstract:
In order to take the structural integral deformation into consideration during the static structural analysis for pipeline structures of the liquid rocket engine, the finite element model of the large-thrust staged combustion cycle hydrogen/oxygen engine was established using solid, shell and beam elements. Meanwhile, the static structural analysis was performed under the joint action of the thermal, pressure and gravity loads. The simulation results were compared with the measured data from the ground firing test. Based on this, the integral deformation of the engine was calculated under different types of loads and the influence of thermal load was analyzed. For typical pipeline structures, the stress distribution was calculated under different types of loads with the submodel method and the influence of the integral deformation on stress level was further investigated. The results show the static structural analysis of the established finite element model could basically reflect the stress state of the engine under the ground firing test state. For hydrogen/oxygen rocket engine, the thermal load has the greatest influence on the integral deformation of the engine, which need to be considered during strength analysis for pipeline structures of the engine.

References:

[1] 岳文龙, 郑大勇, 颜勇, 等. 我国高性能液氧液氢发动机技术发展概述[J]. 中国航天, 2021(10): 20-25.
YUE W L, ZHENG D Y, YAN Y, et al. Overiew of technical development of high performance LOX/LH2 in China[J]. Aerospace China, 2021(10): 20-25.
[2]金平, 蔡国飙. 全流量补燃循环发动机及其特点[J]. 火箭推进, 2003, 29(4): 43-47.
JIN P, CAI G B. FFSC engine and its characteristics[J]. Journal of Rocket Propulsion, 2003, 29(4): 43-47.
[3]孙纪国, 岳文龙. 我国大推力补燃氢氧发动机研究进展[J]. 上海航天, 2019, 36(6): 19-23.
SUN J G, YUE W L. Advances of large-thrust staged combustion cycle hydrogen/oxygen rocket engine in China[J]. Aerospace Shanghai, 2019, 36(6): 19-23.
[4]郑孟伟, 岳文龙, 孙纪国, 等. 我国大推力氢氧发动机发展思考[J]. 宇航总体技术, 2019, 3(2): 12-17.
ZHENG M W, YUE W L, SUN J G, et al. Discussion on Chinese large-thrust hydrogen/oxygen rocket engine development[J]. Astronautical Systems Engineering Technology, 2019, 3(2): 12-17.
[5]杜大华, 穆朋刚, 田川, 等. 液体火箭发动机管路断裂失效分析及动力优化[J]. 火箭推进, 2018, 44(3): 16-22.
DU D H, MU P G, TIAN C, et al. Failure analysis and dynamics optimization of pipeline for liquid rocket engine[J]. Journal of Rocket Propulsion, 2018, 44(3): 16-22.
[6]周帅, 林磊, 杜大华, 等. 液体火箭发动机对接焊管道振动疲劳性能研究[J]. 火箭推进, 2021, 47(3): 90-97.
ZHOU S, LIN L, DU D H, et al. Study on vibration fatigue of butt welded pipe of liquid rocket engine[J]. Journal of Rocket Propulsion, 2021, 47(3): 90-97.
[7]ZHANG W. Failure characteristics analysis and fault diagnosis for liquid rocket engines [M]. Berlin: Springer, 2016.
[8]ROUSE J P, SUN W, HYDE T H, et al. A method to approximate the steady-state creep response of three-dimensional pipe bend finite element models under internal pressure loading using two-dimensional axisymmetric models[J]. Journal of Pressure Vessel Technology, 2014, 136(1): 011402.
[9]崔海涛, 温卫东, 佟丽莉. 纤维缠绕复合材料弯管强度分析[J]. 宇航材料工艺, 2003, 33(6): 39-42.
CUI H T, WEN W D, TONG L L. Strength analysis of filament-wound pipe[J]. Aerospace Materials & Technology, 2003, 33(6): 39-42.
[10]WEBER J, KLENK A, RIEKE M. A new method of strength calculation and lifetime prediction of pipe bends operating in the creep range[J]. International Journal of Pressure Vessels and Piping, 2005, 82(2): 77-84.
[11]王开明, 方雯, 王卫国. 航空发动机支点刚度与整机变形分析方法[J]. 燃气涡轮试验与研究, 2018, 31(4): 30-36.
WANG K M, FANG W, WANG W G. A method for evaluating bearing support stiffness and whole engine deformation[J]. Gas Turbine Experiment and Research, 2018, 31(4): 30-36.
[12]陈晓豫, 钱文清, 鲍益东, 等. 飞机管路强度快速分析方法[J]. 航空制造技术, 2020, 63(21): 85-91.
CHEN X Y, QIAN W Q, BAO Y D, et al. Rapid analysis method of strength for aircraft pipeline[J]. Aeronautical Manufacturing Technology, 2020, 63(21): 85-91.
[13]YOO J, JEON S M. Static and dynamic structural analyses for a 750 kN class liquid rocket engine with TVC actuation[J]. CEAS Space Journal, 2020, 12(3): 331-341.
[14]TANI N, YAMANISHI N, KUROSU A. An end-to-end high fidelity numerical simulation of the LE-X engine[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2012.
[15]王帅, 张明明, 刘桢, 等. 预载荷作用下管路结构动强度评估方法[J]. 北京航空航天大学学报, 2016, 42(4): 745-750.
WANG S, ZHANG M M, LIU Z, et al. Dynamic strength valuation method of pipeline structures under preload[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(4): 745-750.
[16]王帅, 荣克林, 李佰灵, 等. 航天飞行器管路结构的动力学强度分析与试验[J]. 中国科学: 物理学 力学 天文学, 2019, 49(2): 93-100.
WANG S, RONG K L, LI B L, et al. Dynamics strength analysis and test for pipe structures of aerospacecrafts[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2019, 49(2): 93-100.
[17]李斌, 闫松, 杨宝锋. 大推力液体火箭发动机结构中的力学问题[J]. 力学进展, 2021, 51(4): 831-864.
LI B, YAN S, YANG B F. Mechanical problems of the large thrust liquid rocket engine[J]. Advances in Mechanics, 2021, 51(4): 831-864.
[18]叶增荣. 基于MPC简化模型的非对称换热器有限元分析[J]. 压力容器, 2017, 34(5): 38-45.
YE Z R. Finite element analysis of non-axisymmetric heat exchanger based on MPC simplified model[J]. Pressure Vessel Technology, 2017, 34(5): 38-45.
[19]张霁, 翟晓, 刘兵, 等. 固体发动机静强度试验应变数据的分析与处理[J]. 测控技术, 2016, 35(9): 36-39.
ZHANG J, ZHAI X, LIU B, et al. Analysis and processing of strain measurement data of solid rocket motor[J]. Measurement & Control Technology, 2016, 35(9): 36-39.
[20]中国航天工业总公司. 液体火箭发动机应变测量方法: QJ 2967—97 [S]. 北京:中国航天工业总公司, 1997.

Memo

Memo:
-
Last Update: 1900-01-01