|Table of Contents|

Numerical study on liquid-gas emulsification process and flow uniformity in gas generator injector(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年03期
Page:
108-117
Research Field:
目次
Publishing date:

Info

Title:
Numerical study on liquid-gas emulsification process and flow uniformity in gas generator injector
Author(s):
SUN Jingyang12 MAO Hongwei13 MA Yuan4 LI Yanzhong4
1.National Key Laboratory of Aerospace Power System and Plasma Technology, Xi'an Jiaotong University,Xi'an 710049, China; 2. School of Future Technology, Xi'an Jiaotong University, Xi'an 710149, China; 3. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710149, China; 4. School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710149, China
Keywords:
gas emulsification gas generator liquid-gas flow fitted laws of pressure drop
PACS:
TK49
DOI:
10.3969/j.issn.1672-9374.2024.03.012
Abstract:
The gas and emulsification technology can significantly increase the pressure drop when the fuel flows through the gas generator, so the atomization and combustion requirements of the fuel can be satisfied under variable working conditions. However, there is still a lack of quantitative research on the changing law of pressure drop in the process. In this paper, the CFD(Computational Fluid Dynamics)method was used to calculate the whole field and local nozzles of a certain type of gas generator under variable working conditions, the phase, velocity and pressure distribution laws of kerosene in the gas generator during the nitrogen blowing process were obtained. The flow and multiphase flow pressure drop characteristics were fitted and analyzed. The results show that the distribution of kerosene phase at different nozzles is not uniform, and the flow rate difference between nozzles can be up to 66%; the pressure drop at the nozzles after nitrogen blowing can be improved by more than 1.64 times compared with the single-phase flow of kerosene; the pressure drop resistance coefficient of the gas single-phase flow at the nozzle shows a linear change with the back pressure, while the kerosene single-phase flow pressure drop resistance coefficient shows an exponential law with the flow rate. The mathematical model of the pressure drop characteristics at the gas generator nozzle based on the Marchinelli formula has an average error of 3.93% with the numerical calculation results, which has good predictability.

References:

[1] 谭永华, 杜飞平, 陈建华, 等. 液氧煤油高压补燃循环发动机深度变推力系统方案研究[J]. 推进技术, 2018, 39(6): 1201-1209.
TAN Y H, DU F P, CHEN J H, et al. Study on deep variable thrust system of LOX/kerosene high pressure staged combustion engine[J]. Journal of Propulsion Technology, 2018, 39(6): 1201-1209.
[2]张小平. 补燃循环发动机推力调节研究[J]. 火箭推进, 2008, 34(4): 1-5.
ZHANG X P. Investigation on the thrust regulation of staged combustion cycle engine[J]. Journal of Rocket Propulsion, 2008, 34(4): 1-5.
[3]BRADLEY D. On the atomization of liquids by high-velocity gases[J]. Journal of Physics D: Applied Physics, 1973, 6(14): 1724-1736.
[4]司朝润, 张贤杰, 王俊彪. 7055铝合金粉末的氩气低压雾化技术[J]. 粉末冶金材料科学与工程, 2015, 20(1): 112-117.
SI C R, ZHANG X J, WANG J B. Low-pressure argon atomization process of 7055Al alloy powders[J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(1): 112-117.
[5]朱玲玲, 吴建军, 刘明翔, 等. 基于CFD技术的超音速喷嘴两相流破碎机制研究[J]. 粉末冶金材料科学与工程, 2018, 23(3): 229-237.
ZHU L L, WU J J, LIU M X, et al. A computational fluid dynamics(CFD)research on the atomization mechanism of two-phase flows in ultrasonic gas atomizer[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(3): 229-237.
[6]徐文, 高新妮, 胡保林, 等. 离心式喷嘴一次破碎与二次雾化的数值模拟[J]. 火箭推进, 2022, 48(4): 13-20.
XU W, GAO X N, HU B L, et al. Numerical simulation of primary breakup and secondary atomization for centrifugal nozzle[J]. Journal of Rocket Propulsion, 2022, 48(4): 13-20.
[7]JENG S, BENJAMIN M, JOG M. Computational and experimental study of liquid sheet emanating from simplex fuel nozzle[J]. AIAA Journal, 1998, 36(2): 201-207.
[8] XUE J. Computational simulation of flow inside pressure-swirl atomizers [D]. Cincinnati: University of Cincinnati, 2004.
[9]周立新, 张会强, 雷凡培, 等. 离心式喷嘴内流场特性的数值模拟[J]. 推进技术, 2002(6): 480-484.
ZHOU L X, ZHANG H Q, LEI F P, et al. Numerical simulation of internal flow field of swirl nozzle[J]. 2002(6): 480-484.
[10]张涛, 王福顺, 况付毫, 等. 气液同轴双离心式喷嘴宏观雾化特性实验研究[J]. 推进技术, 2023, 44(9): 157-168.
ZHANG T, WANG F S, KUANG F H, et al. Experimental study on macro-spray characteristics of gas-liquid double swirl coaxial injectors[J]. Journal of Propulsion Technology, 2023, 44(9): 157-168.
[11]DRESSLER G. Summary of deep throttling rocket engines with emphasis on Apollo LMDE[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virginia: AIAA, 2006.
[12]GILL G S, NURICK W H. Liquid rocket engine injectors[R]. NASA SP-8089, 1976.
[13]CASIANO M J, HULKA J R, YANG V. Liquid-propellant rocket engine throttling: a comprehensive review[J]. Journal of Propulsion and Power, 2010, 26(5): 897-923.
[14]MORRELL G. Rocket thrust variation with foamed liquid propellants[R]. NACA-RM-E56K27,1957.
[15]CONRAD E W, HANNUM N P, BLOOMER H E. Photographic study of liquid-oxygen boiling and gas injection in the injector of a chugging rocket engine[R]. NASA-TM-X-948, 1964.
[16]ANTL R J, HANNUM N P, MANSOUR A H, et al. Throttling characteristics of a hydrogen-oxygen, regeneratively cooled, pump-fed rocket engine[R]. NASA-TM-X-1043, 1964.
[17]RIVARD J. New techniques for throttleable bipropellant rocket engines[C]//Propulsion Joint Specialist Conference. Reston, Virginia: AIAA, 1965.
[18]FREDTICKSON H, RICE P. Second progress report on rocket motor throttling[R]. UMM-89, 1952.
[19]GREENE C, WOODWARD R, PAL S, et al. Design and study of a LOX/GH2 throttleable swirl injector for rocket applications[C]. 2002 JANNAF 38th Combustion Subcommittee Meeting[s.l.]: [s.n.], 2002.
[20]张贵田. 高压补燃液氧煤油发动机[M]. 北京: 国防工业出版社, 2005.
[21]王维军, 李泰龙. 射流式离心泵气液两相流数值分析[J]. 流体机械, 2020, 48(2): 53-57.
WANG W J, LI T L. Numerical analysis of gas-liquid two-phase flow in flow-ejecting self-priming centrifugal pump[J]. Fluid Machinery, 2020, 48(2): 53-57.
[22]易宗礼, 侯力, 游云霞, 等. 某旋流式燃油喷嘴流场分析[J]. 机械设计与制造, 2021(2): 107-111.
YI Z L, HOU L, YOU Y X, et al. Flow field analysis for a pressure-swirl nozzle[J]. Machinery Design & Manufacture, 2021(2): 107-111.
[23]俞南嘉, 鲍启林, 张洋, 等. 针栓式液氧/煤油发动机燃烧数值仿真[J]. 火箭推进, 2018, 44(4): 23-29.
YU N J, BAO Q L, ZHANG Y, et al. Numerical simulation of combustion for LOX/kerosene engine with pintle injector[J]. Journal of Rocket Propulsion, 2018, 44(4): 23-29.

Memo

Memo:
-
Last Update: 1900-01-01