[1] ДЕМЯНКО Ю Г. 核火箭发动机[M]. 郑官庆, 王江, 黄丽华, 等, 译. 北京:中国原子能科学研究院, 2005.
[2]韩鸿硕, 陈杰. 21世纪国外深空探测发展计划及进展[J]. 航天器工程, 2008, 17(3): 1-22.
HAN H S, CHEN J. 21st century foreign deep space exploration development plans and their progresses[J]. Spacecraft Engineering, 2008, 17(3): 1-22.
[3]张梦龙, 张悦, 王宝和. 空间核推进系统综述与展望[J]. 兵器装备工程学报, 2018, 39(9): 96-100.
ZHANG M L, ZHANG Y, WANG B H. Review and prospect of space nuclear propulsion system[J]. Journal of Ordnance Equipment Engineering, 2018, 39(9): 96-100.
[4]刘国球,任汉芬,朱昌宁,等. 液体火箭发动机原理[M]. 北京:中国宇航出版社,1993.
[5]洪刚, 娄振, 郑孟伟, 等. 载人核热火箭登陆火星方案研究[J]. 载人航天, 2015, 21(6): 611-617.
HONG G, LOU Z, ZHENG M W, et al. Study on nuclear thermal rocket for manned Mars exploration[J]. Manned Spaceflight, 2015, 21(6): 611-617.
[6]洪刚, 戚峰, 王建明, 等. 载人登陆火星任务核热推进系统方案研究[J]. 载人航天, 2018, 24(1): 102-106.
HONG G, QI F, WANG J M, et al. Nuclear thermal propulsion system design for manned Mars mission[J]. Manned Spaceflight, 2018, 24(1): 102-106.
[7]BOROWSKI S, MCCURDY D, PACKARD T. “7-launch” NTR space transportation option for NASA's Mars design reference architecture(DRA)5.0[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2009.
[8]杨彬, 唐生勇, 李爽, 等. 核热推进载人火星探测方案设计[J]. 宇航学报, 2018, 39(11): 1197-1208.
YANG B, TANG S Y, LI S, et al. Manned Mars exploration concept using nuclear thermal propulsion system[J]. Journal of Astronautics, 2018, 39(11): 1197-1208.
[9]BOROWSKI S K, MCCURDY D R, BURKE L M. The nuclear thermal propulsion stage(NTPS): a key space asset for human exploration and commercial missions to the moon[C]//AIAA SPACE 2013 Conference and Exposition. Reston, Virginia: AIAA, 2013.
[10]解家春, 霍红磊, 苏著亭, 等. 核热推进技术发展综述[J]. 深空探测学报, 2017, 4(5): 417-429.
XIE J C, HUO H L, SU Z T, et al. Review of nuclear thermal propulsion technology development[J]. Journal of Deep Space Exploration, 2017, 4(5): 417-429.
[11]HAROLD P. Nuclear thermal propulsion ground test history[C]//2014 Nuclear Emerging Technologies for Space Conference. [S.l.]: Stennis Space Center, 2014.
[12]SIEVERS R, LIVINGSTON J, PIERCE B. NERVA propulsion system design considerations[C]//26th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1990.
[13]BLACK D, GUNN S. A technical summary of engine and reactor subsystem design performance during the NERVA program[C]//Conference on Advanced SEI Technologies. Reston, Virginia: AIAA, 1991.
[14]LACY D D. Nuclear rocket simulator tests facility and research apparatus description: NASA TM X-52043[R]. Cleveland, Ohio: Lewis Research Center, 1964.
[15]REARDON J E. Full-scale nuclear rocket cold-flow test facility and research apparatus: NASA TM X-1763[R]. Cleveland, Ohio: Lewis Research Center, 1969.
[16]SANDLER S, FEDDERSEN R. Particle bed reactor engine technology[C]//Space Programs and Technologies Conference. Reston, Virginia: AIAA, 1992.
[17]WALTON L, SAPYTA J. SNTP program reactor design[C]//29th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1993.
[18]WALTON L, ALES M. SNTP program fuel element design[C]//29th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1993.
[19]HASLETT R A. Space nuclear thermal propulsion program final report: PL-TR-95-1064[R]. Kirtland: Phillips Laboratory, 1995.
[20]DRAKE B G, HOFFMAN S J, BEATY D W. Human exploration of Mars, Design Reference Architecture 5.0[C]//2010 IEEE Aerospace Conference. Big Sky, MT: IEEE, 2010.
[21]HOWE S. Identification of archived design information for small class nuclear rockets[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2005.
[22]SCHNITZLER B, BOROWSKI S, FITTJE J. A 25 000-lbf thrust engine options based on the small nuclear rocket engine design[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2009.
[23]HOUTS M, BOROWSKI S, GEORGE J, et al. Affordable development of a nuclear cryogenic propulsion stage[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2012.
[24]EMRICH W, KIRK D. Design considerations for the nuclear thermal rocket element environmental simulator(NTREES)[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2006.
[25]EMRICH W, MORAN R, PEARSON J. Nuclear thermal rocket element environmental simulator(NTREES)upgrade activities[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2012.
[26]BOROWSKI S K, SEFCIK R J, FITTJE J J, et al. Affordable development and demonstration of a small NTR engine and stage: a preliminary NASA, DOE and industry assessment[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2015.
[27]杨开, 米鑫. 美国2022财年航天运输系统发展新动向[J]. 国际太空, 2021(8): 31-35.
YANG K, MI X. New development trends of American space transportation system in FY 2022[J]. Space International, 2021(8): 31-35.
[28]郭筱曦. 美国空间核动力近期政策与技术发展分析[J]. 国际太空, 2021(8): 4-8.
GUO X X. Analysis of recent policy and technical development of space nuclear power in the United States[J]. Space International, 2021(8): 4-8.
[29]Sierra Space Corporation. Sierra space provides integration services for new nuclear propulsion system as part of darpa's draco program[EB/OL].[2023-12-02]. https://www.sierraspace.com/newsroom/press-releases/ sierra-space-provides-integration-services-for-new-nuclear-propulsion-system-as-part-of-darpas-draco-program.
[30]USNC. USNC-tech team wins contract to develop nuclear thermal propulsion system for NASA[EB/OL].[2023-12-02]. https://www.usnc.com/usnc-tech-nuclear-thermal-propulsion-award.
[31]Encyclopedia Astronautica. Russian Mars propulsion-nuclear thermal[EB/OL].[2023-12-02]. http://www.astronautix.com/r/russianmarsuclearthermal.html.
[32]张泽, 薛翔, 王园丁, 等. 空间核动力推进技术研究展望[J]. 火箭推进, 2021, 47(5): 1-13.
ZHANG Z, XUE X, WANG Y D, et al. Prospect of space nuclear power propulsion technology[J]. Journal of Rocket Propulsion, 2021, 47(5): 1-13.
[33]张泽旭, 郑博, 周浩, 等. 载人小行星探测任务总体方案研究[J]. 深空探测学报, 2015, 2(3): 229-235.
ZHANG Z X, ZHENG B, ZHOU H, et al. Overall scheme of manned asteroid exploration mission[J]. Journal of Deep Space Exploration, 2015, 2(3): 229-235.
[34]王小军, 汪小卫. 载人火星探测任务构架及其航天运输系统研究[J]. 中国航天, 2021(7): 8-14.
WANG X J, WANG X W. Human Mars exploration mission architecture and corresponding space transportation system[J]. Aerospace China, 2021(7): 8-14.
[35]朱岩, 马元, 南向谊, 等. 大推力核热火箭运载器及动力特性分析[J]. 载人航天, 2018, 24(3): 388-393.
ZHU Y, MA Y, NAN X Y, et al. Characteristic analysis of nuclear thermal rocket launcher and high thrust engine[J]. Manned Spaceflight, 2018, 24(3): 388-393.
[36]王浩泽, 左安军, 霍红磊, 等. 110 kN核热火箭发动机系统方案选取与参数优化研究[J]. 原子能科学技术, 2019, 53(1): 30-37.
WANG H Z, ZUO A J, HUO H L, et al. System design selection and parametric optimization analysis of 110 kN nuclear thermal rocket engine[J]. Atomic Energy Science and Technology, 2019, 53(1): 30-37.
[37]李子亮, 王浩泽, 蔡震宇, 等. 100吨级核热火箭发动机喷管流动传热特性数值分析[J]. 载人航天, 2018, 24(6): 772-776.
LI Z L, WANG H Z, CAI Z Y, et al. Numerical analysis of flow and heat transfer characteristics of 100 ton nuclear thermal rocket engine nozzle[J]. Manned Spaceflight, 2018, 24(6): 772-776.
[38]李子亮, 徐凯. 110 kN核热发动机推力室非平衡流动传热数值模拟研究[J]. 载人航天, 2020, 26(5): 618-623.
LI Z L, XU K. CFD simulation of non-equilibrium flow and heat transfer in thrust chamber of a 110 kN nuclear heat engine[J]. Manned Spaceflight, 2020, 26(5): 618-623.
[39]赵润喆, 霍红磊. 低浓铀核热火箭发动机SCCTE堆芯物理特性初步研究[J]. 原子能科学技术, 2021, 55(S02): 221-227.
ZHAO R Z, HUO H L. Preliminary study on neutronic characteristic of LEU NTR reactor SCCTE core[J]. Atomic Energy Science and Technology, 2021, 55(S02): 221-227.
[40]房玉良, 秦浩, 王成龙, 等. 高温、高流速氢气在圆管内流动换热特性研究[J]. 原子能科学技术, 2020, 54(10): 1762-1770.
FANG Y L, QIN H, WANG C L, et al. Heat transfer performance of high temperature and high velocity hydrogen flow inside circle tube[J]. Atomic Energy Science and Technology, 2020, 54(10): 1762-1770.
[41]房玉良, 王成龙, 田文喜, 等. 高温氢工质热物理性质计算分析[J]. 原子能科学技术, 2021, 55(8): 1411-1419.
FANG Y L, WANG C L, TIAN W X, et al. Analysis of thermophysical property of high temperature hydrogen[J]. Atomic Energy Science and Technology, 2021, 55(8): 1411-1419.
[42]POWELL J, LUDEWIG H, HORN F. The liquid annular reactor system propulsion[R]. New York, USA: Brookhaven National Laboratory, 1991.
[43]房玉良, 刘林, 孙海亮, 等. 核热推进反应堆燃料元件发展概述[J]. 宇航总体技术, 2020, 4(1): 63-70.
FANG Y L, LIU L, SUN H L, et al. Development of fuel elements in nuclear thermal propulsion system[J]. Astronautical Systems Engineering Technology, 2020, 4(1): 63-70.
[44]杨玉新, 任全彬, 段艳娟, 等. 美俄核热推进技术发展现状与启示[J]. 固体火箭技术, 2023, 46(3): 399-409.
YANG Y X, REN Q B, DUAN Y J, et al. Development status and prospect of nuclear thermal propulsion technology in US and Russia[J]. Journal of Solid Rocket Technology, 2023, 46(3): 399-409.
[45]VADIM Z, VLADIMIR P. Russian nuclear rocket engine design for Mars exploration[J]. Tsinghua Science and Technology, 2007, 12(3): 256-260.
[46]BRENGLE R, HARTY R, BHATTACHARYYA S. The promise and challenges of cermet fueled nuclear thermal propulsion reactors[C]//29th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1993.
[47]BULMAN M, CULVER D, MCILWAIN M, et al. US/CIS integrated NTRE[C]//29th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1993.
[48]BLACK D, GUNN S. A technical summary of engine and reactor subsystem design performance during the NERVA program[C]//Conference on Advanced SEI Technologies. Reston, Virginia: AIAA, 1991.
[49]EMRICH W, MORAN R, PEARSON J. Nuclear thermal rocket element environmental simulator(NTREES)upgrade activities[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2012.
[50]苏光辉, 章静, 王成龙. 核能在未来载人航天中的应用[J]. 载人航天, 2020, 26(1): 1-13.
SU G H, ZHANG J, WANG C L. Application of nuclear energy in future manned space flight[J]. Manned Spaceflight, 2020, 26(1): 1-13.
[51]李平岐, 陈海鹏, 洪刚, 等. 载人登火运载器核热推进末级总体方案初步研究[J]. 国际太空, 2017(9): 15-21.
LI P Q, CHEN H P, HONG G, et al. Preliminary study on manned Mars landing vehicle with nuclear thermal propulsion system[J]. Space International, 2017(9): 15-21.