|Table of Contents|

Development status and prospect of nuclear thermal rocket engine technology(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年04期
Page:
14-30
Research Field:
目次
Publishing date:

Info

Title:
Development status and prospect of nuclear thermal rocket engine technology
Author(s):
PENG Leqin YANG Bao'e MA Yuan GAO Yushan YANG Anlong XU Tiangang WU Huibo
National Key Laboratory of Aerospace Liquid Propulsion,Xi'an Aerospace Propulsion Institute, Xi'an 710100, China
Keywords:
solid core nuclear thermal rocket engine reactor ground test system simulation
PACS:
V439.5
DOI:
10.3969/j.issn.1672-9374.2024.04.002
Abstract:
In order to address the challenges of solar energy utilization and the limitations of chemical energy capacity in space missions, it is crucial to develop space nuclear power. The nuclear thermal rocket engine system offers numerous advantages, including high energy conversion efficiency, a wide range of thrust regulation, large specific impulse, long residence time, quick start-up, and the ability for multiple start-stop cycles. This system has emerged as a prominent research focus both domestically and internationally in recent years. The development of nuclear thermal rocket engine technology in the United States and Russia was reviewed. It summarized the key technologies involved in reactor, engine, propellant management, ground test, system simulation, and nuclear safety. Additionally, it outlined the insights gained from the development of nuclear thermal rocket engine in the United States and Russia, and provided suggestions for future planning, demonstration, and technical research and development of nuclear thermal rocket engine.

References:

[1] HASLETT R A. Space nuclear thermal propulsion program final report: PL-TR-95-1064[R]. Kirtland: [s.n.], 1995.
[2]SONNY M P. Space technology mission directorate game changing development program-nuclear thermal propulsion(NTP)FY19 annual review[R]. Huntsville, Alabama: Marshall Space Flight Center, 2019.
[3]STAORD T P. America at the threshold: report of the synthesis group on America's space exploration initiative[R]. Washington, D C: US Government Printing Office, 1991.
[4]Sierra Space Corp. Provides integration services for new nuclear propulsion systemas part of DARPA's DRACO program[Z]. 2021.
[5]General Atomics Corp. Completes DRACO nuclear thermal propulsion system design and test milestone[Z]. 2022.
[6]廖宏图. 空间核能源与核推进技术综述(3:固芯核热推进及其他先进概念方案)[J]. 空间推进, 2015, 9(3): 38-48.
LIAO H T. An overview of nuclear power and nuclear propulsion in space(part Ⅲ: solid core nuclear thermal propulsion and other advanced conceptual schemes)[J]. Space Propulsion, 2015, 9(3): 38-48.
[7]小威廉·埃姆里希. 核火箭推进原理[M]. 杭州: 浙江大学出版社, 2016.
EMRICH W J. Principles of nuclear rocket propulsion[M]. Hangzhou: Zhejiang University Press, 2016.
[8]科罗捷耶夫 A C. 核火箭发动机[M]. 上海: 上海交通大学出版社, 2020.
КОРОТЕЕВ А С. Nuclear rocket engine[M]. Shanghai: Shanghai Jiaotong University Press, 2020.
[9]Nerva Operations Office. Final report, NERVA engine development program and associated tasks, for the period 1961/7/10 through 1962/1/10[R]. Azusa, California: Aerojet-Ceneral Corporation, 1962.
[10]廖宏图. 核热推进技术综述[J]. 火箭推进, 2011, 37(4): 1-11.
LIAO H T. Overview of nuclear thermal propulsion technologies[J]. Journal of Rocket Propulsion, 2011, 37(4): 1-11.
[11]GABRIELLI R A, HERDRICH G. Review of nuclear thermal propulsion systems[J]. Progress in Aerospace Sciences, 2015, 79: 92-113.
[12]何伟锋, 向红军, 蔡国飙. 核火箭原理、发展及应用[J]. 火箭推进, 2005, 31(2): 37-43.
HE W F, XIANG H J, CAI G B. The fundamentals, developments and applications of nuclear rocket propulsion[J]. Journal of Rocket Propulsion, 2005, 31(2): 37-43.
[13]美国国家科学院, 工程院核医学院, 工程和物理科学司, 等. 载人火星探索中空间核动力推进[M]. 北京: 中国宇航出版社, 2023.
National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, et al. Space nuclear propulsion for human Mars exploration[M]. Beijing: China Astronautic Publishing House, 2023.
[14]The White House. National space policy of the United States of America[Z]. 2020.
[15]孙宗祥, 李文佳, 李一鸣. 俄罗斯“海燕” 核动力巡航导弹发展综述[J]. 战术导弹技术, 2022(5): 106-118.
SUN Z X, LI W J, LI Y M. Overview of the development of Russian Petrel nuclear-powered cruise missile[J]. Tactical Missile Technology, 2022(5): 106-118.
[16]范唯唯. 中国发布《2017—2045年航天运输系统发展路线图》[J]. 空间科学学报, 2018, 38(1): 6.
FAN W W. China releases roadmap for the development of space transportation system 2017—2045[J]. Chinese Journal of Space Science, 2018, 38(1): 6.
[17]中国航天大会. 2020 年宇航领域科学问题和技术难题发布[J]. 宇航学报, 2020, 41(9): 1.
China Space Conference. Release of scientific and technical problems in the field of aerospace in 2020[J]. Journal of Astronautics, 2020, 41(9): 1.
[18]中国航天大会. 2021年宇航领域科学问题和技术难题在中国航天大会发布[J]. 宇航学报, 2021, 42(5): 1.
China Space Conference. Release of scientific and technical problems in the field of aerospace in 2021[J]. Journal of Astronautics, 2021, 42(5): 1.
[19]赵磊. 2023年宇航领域科学问题和技术难题发布[N]. 中国日报, 2023-04-24.
ZHAO L. Release of scientific and technical problems in the field of aerospace in 2023[N]. China Daily, 2023-04-24.
[20]李春剑, 詹媛. 中国科协发布2023重大科学问题、工程技术难题[N]. 光明日报, 2023-10-23.
LI C J, ZHAN Y. China association for science and technology releases 2023 major scientific issues and engineering technical difficulties[N]. Guangming Daily, 2023-10-23.
[21]SERFIERT H S, MILLS M M. Problems of applications of nuclear energy to rocket propulsion: Jet Propulsion Laboratory[Z]. 1947.
[22]ROBBINS W. An historical perspective of the NERVA nuclear rocket engine technology program[C]//Conference on Advanced SEI Technologies. Reston, Virginia: AIAA, 1991.
[23]FINSETH J L. Rover nuclear rocket engine program: overview of Rover engine tests: 313-002-91-059[R]. Huntsville, Alabama: Sverdrup Technology Inc., 1991.
[24]杨玉新, 任全彬, 段艳娟, 等. 美俄核热推进技术发展现状与启示[J]. 固体火箭技术, 2023, 46(3): 399-409.
YANG Y X, REN Q B, DUAN Y J, et al. Development status and prospect of nuclear thermal propulsion technology in US and Russia[J]. Journal of Solid Rocket Technology, 2023, 46(3): 399-409.
[25]JOYNER C, LENTATI A, CICHON J. Multidisciplinary analysis of nuclear thermal propulsion design options for human exploration missions[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2006.
[26]DRAKE B G, WATTS K D. Human exploration of mars design reference architecture 5.0[R]. Houston, Texas: NASA Johnson Space Center, 2014.
[27]苏著亭, 杨继才, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016.
SU Z T, YANG J C, KE G T. Space nuclear power[M]. Shanghai: Shanghai Jiaotong University Press, 2016.
[28]HOUTS M G, KIM T, EMRICH W J, et al. The nuclear cryogenic propulsion stage[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2014.
[29]EMRICH W J. Nuclear cryogenic propulsion stage(NCPS)fuel element testing in the nuclear thermal rocket element environmental simulator(NTREES)[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2017.
[30]伍浩松, 张焰. 美拟于2025年示范核热推进系统[J]. 国外核新闻, 2021(5): 17.
WU H S, ZHANG Y. US plans to demonstrate nuclear thermal propulsion system in 2025[J]. Foreign Nuclear News, 2021(5): 17.
[31]LYNCHBURG V. BWXT to provide nuclear reactor engine and fuel for DARPA space project[Z]. 2023.
[32]DARPA. Demonstration rocket for agile cislunar operations(DRACO)[Z]. 2022.
[33]The White House. Memorandum on the national strategy for space nuclear power and propulsion(space policy directive-6)[Z]. 2020.
[34]U. S. Department for Energy. Energy for space[Z]. 2021.
[35]The White House. Promoting small modular reactors for national defense and space exploration[Z]. 2021.
[36]STONE C. Maneuver warfare in space: the strategic mandate for nuclear propulsion[R]. Arlington, VA: Mitchell Institute, 2022.
[37]马世俊, 唐玉华, 朱安文, 等. 空间核动力的进展[M]. 北京: 中国宇航出版社, 2019.
MA S J, TANG Y H, ZHU A W, et al. Advances in space nuclear power[M]. Beijing: China Astronautic Publishing House, 2019.
[38]徐友涛. 核热推进运载火箭技术发展综述[J]. 国际太空, 2017(9): 8-14.
XU Y T. Development review of nuclear thermal propulsion launch vehicle technologies[J]. Space International, 2017(9): 8-14.
[39]解家春, 赵守智. 核热推进堆芯方案的发展[J]. 原子能科学技术, 2012, 46(B12):889-895.
XIE J C, ZHAO S Z. Development of reactor core for nuclear thermal propulsion[J]. Atomic Energy Science and Technology, 2012, 46(B12):889-895.
[40]霍红磊, 安伟健, 解家春, 等. CERMET-SNRE堆芯物理计算分析[J]. 原子能科学技术, 2016, 50(12): 2150-2156.
HUO H L, AN W J, XIE J C, et al. Core physics calculation and analysis for CERMET-SNRE[J]. Atomic Energy Science and Technology, 2016, 50(12): 2150-2156.
[41]赵润喆, 霍红磊. 低浓铀核热火箭发动机SCCTE堆芯物理特性初步研究[J]. 原子能科学技术, 2021, 55(Sup.2): 221-227.
ZHAO R Z, HUO H L. Preliminary study on neutronic characteristic of LEU NTR reactor SCCTE core[J].Atomic Energy Science and Technology, 2021, 55(Sup.2): 221-227.
[42]李强, 解家春, 霍红磊. 核热推进钨基CERMET燃料模拟件制备工艺研究[J]. 世界有色金属, 2022(12): 169-171.
LI Q, XIE J C, HUO H L. Research of fabrication technology for CERMET fuel based tungsten used in nuclear thermal propulsion[J]. World Nonferrous Metals, 2022(12): 169-171.
[43]霍红磊, 赵守智, 解家春, 等. 采用钨基金属陶瓷燃料的核热推进反应堆掉落临界安全特性研究[J]. 载人航天, 2017, 23(3): 353-357.
HUO H L, ZHAO S Z, XIE J C, et al. Study on dropping criticality safety performance of nuclear thermal propulsion reactor with tungsten based CERMET fuel[J]. Manned Spaceflight, 2017, 23(3): 353-357.
[44]游尔胜, 石磊, 郑艳华, 等. 球床堆在空间核动力系统中的应用[J]. 原子能科学技术, 2015, 49(Sup.1): 75-80.
YOU E S, SHI L, ZHENG Y H, et al. Application of pebble bed reactor in space nuclear power system[J]. Atomic Energy Science and Technology, 2015, 49(Sup.1): 75-80.
[45]吉宇, 毛晨瑞, 孙俊, 等. 核热火箭发动机系统循环方案分析与设计[J]. 火箭推进, 2022, 48(1): 14-21.
JI Y, MAO C R, SUN J, et al. Analysis and design of system cycle for nuclear thermal rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(1): 14-21.
[46]韩梓超, 章静, 王明军, 等. 核热推进系统氢气物性及流动换热模型分析[J]. 原子能科学技术, 2022, 56(7): 1276-1284.
HAN Z C, ZHANG J, WANG M J, et al. Analysis of thermodynamic property, flow and heat transfer model of hydrogen in NTP system[J]. Atomic Energy Science and Technology, 2022, 56(7): 1276-1284.
[47]房玉良, 秦浩, 王成龙, 等. 高温、高流速氢气在圆管内流动换热特性研究[J]. 原子能科学技术, 2020, 54(10): 1762-1770.
FANG Y L, QIN H, WANG C L, et al. Heat transfer performance of high temperature and high velocity hydrogen flow inside circle tube[J]. Atomic Energy Science and Technology, 2020, 54(10): 1762-1770.
[48]HAN Z C, ZHANG J, WANG M J, et al. A modified system analysis code for thermo-hydraulic calculation of hydrogen in a nuclear thermal propulsion(NTP)system[J]. Annals of Nuclear Energy, 2021(164): 108632.
[49]刘忠恕. 核热火箭发动机系统方案研究[D]. 北京: 中国航天科技集团公司第一研究院, 2017.
LIU Z S. Study on the scheme of nuclear thermal rocket engine system[D]. Beijing: First Research Institute of China Aerospace Science and Technology Corporation, 2017.
[50]王浩泽, 李子亮, 吴宏雨, 等. 基于金属陶瓷堆芯1 000 kN核热火箭发动机系统及组件参数研究[J]. 载人航天, 2018, 24(5): 637-642.
WANG H Z, LI Z L, WU H Y, et al. Thruster system and component parameters of a 1 000 kN nuclear thermal rocket thruster based on ceramic-metallic reactor core[J]. Manned Spaceflight, 2018, 24(5): 637-642.
[51]王浩泽, 左安军, 霍红磊, 等. 110 kN核热火箭发动机系统方案选取与参数优化研究[J]. 原子能科学技术, 2019, 53(1): 30-37.
WANG H Z, ZUO A J, HUO H L, et al. System design selection and parametric optimization analysis of 110 kN nuclear thermal rocket engine[J]. Atomic Energy Science and Technology, 2019, 53(1): 30-37.
[52]朱岩, 马元, 南向谊, 等. 大推力核热火箭运载器及动力特性分析[J]. 载人航天, 2018, 24(3): 388-393.
ZHU Y, MA Y, NAN X Y, et al. Characteristic analysis of nuclear thermal rocket launcher and high thrust engine[J]. Manned Spaceflight, 2018, 24(3): 388-393.
[53]王三丙, 马元, 郭斯茂, 等. 核热火箭反应堆燃料对比分析[J]. 载人航天, 2018, 24(6): 784-795.
WANG S B, MA Y, GUO S M, et al. Comparison and analysis of nuclear thermal propulsion reactor fuel[J]. Manned Spaceflight, 2018, 24(6): 784-795.
[54]宋霁阳. 轻水堆堆芯热工物理耦合特性分析[D]. 哈尔滨: 哈尔滨工程大学, 2018.
SONG J Y. Analysis of coupling characteristics between thermal-hydraulics and neutronics for light-water reactor[D]. Harbin: Harbin Engineering University, 2018.
[55]钟科. 高温气冷堆[Z]. 2012.
[56]房玉良, 刘林, 孙海亮, 等. 核热推进反应堆燃料元件发展概述[J]. 宇航总体技术, 2020, 4(1): 63-70.
FANG Y L, LIU L, SUN H L, et al. Development of fuel elements in nuclear thermal propulsion system[J]. Astronautical Systems Engineering Technology, 2020, 4(1): 63-70.
[57]JOYNER C R, JENNINGS T, HANKS D E, et al. NTP engine system design and modeling[C]//ASCEND 2022.Reston, Virginia: AIAA, 2022.
[58]Aerojet General Corp. NERVA engine development program and associated tasks, contract year 1962, summary report, volume 1[R]. Azusa, California: [s.n.], 1962.
[59]张泽, 薛翔, 王园丁, 等. 空间核动力推进技术研究展望[J]. 火箭推进, 2021, 47(5): 1-13.
ZHANG Z, XUE X, WANG Y D, et al. Prospect of space nuclear power propulsion technology[J]. Journal of Rocket Propulsion, 2021, 47(5): 1-13.
[60]SAGER P. Radiation shield design considerations for nuclear rocket space vehicles[C]//Space Programs and Technologies Conference. Reston, Virginia: AIAA, 1992.
[61]宋旺旺, 杜金峰, 赖万昌, 等. 一种紧凑型星球表面反应堆辐射屏蔽初步设计[J]. 核电子学与探测技术, 2015, 35(2): 154-158.
SONG W W, DU J F, LAI W C, et al. A preliminary design of a compact radiation shielding of fission surface power reactor[J]. Nuclear Electronics & Detection Technology, 2015, 35(2): 154-158.
[62]胡伟峰, 申麟, 杨建民, 等. 低温推进剂长时间在轨的蒸发量控制技术进展[J]. 导弹与航天运载技术, 2009(6): 28-34.
HU W F, SHEN L, YANG J M, et al. Progress of study on transpiration control technology for orbit long-term applied cryogenic propellant[J]. Missiles and Space Vehicles, 2009(6): 28-34.
[63]胡伟峰, 申麟, 彭小波, 等. 低温推进剂长时间在轨的蒸发量控制关键技术分析[J]. 低温工程, 2011(3): 59-66.
HU W F, SHEN L, PENG X B, et al. Key technology analysis of boil-off control study on cryogenic propellant long-term application on orbit[J]. Cryogenics, 2011(3): 59-66.
[64]李鹏, 孙培杰, 包轶颖, 等. 低温推进剂长期在轨储存技术研究概述[J]. 载人航天, 2012, 18(1): 30-36.
LI P, SUN P J, BAO Y Y, et al. Research on long-term storage technology of cryogenic propellant in orbit[J]. Manned Spaceflight, 2012, 18(1): 30-36.
[65]李鹏, 孙培杰, 盛敏健, 等. 推进飞行器低温推进剂在轨贮存被动蒸发控制方案研究[J]. 载人航天, 2018, 24(1): 91-97.
LI P, SUN P J, SHENG M J, et al. Investigation on passive boil-off control scheme for orbital storage of cryogenic propellant in orbital transfer spacecraft[J]. Manned Spaceflight, 2018, 24(1): 91-97.
[66]胡聪, 蒋文兵, 孙培杰, 等. 低温推进剂空间零蒸发贮存技术研究进展[J]. 载人航天, 2022, 28(4): 487-498.
HU C, JIANG W B, SUN P J, et al. Advances of zero boil-off technologies for cryogenic propellant storage in space[J]. Manned Spaceflight, 2022, 28(4): 487-498.
[67]王亚军, 刘辉, 黄兵, 等. 长时间滑行低温推进剂管理关键技术分析[J]. 宇航总体技术, 2022, 6(3): 1-9.
WANG Y J, LIU H, HUANG B, et al. Key technology analysis of cryogenic propellant management during long-coast flight[J]. Astronautical Systems Engineering Technology, 2022, 6(3): 1-9.
[68]王磊, 厉彦忠, 马原, 等. 液体推进剂在轨加注技术与加注方案[J]. 航空动力学报, 2016, 31(8): 2002-2009.
WANG L, LI Y Z, MA Y, et al. On-orbit refilling technologies and schemes of liquid propellant[J]. Journal of Aerospace Power, 2016, 31(8): 2002-2009.
[69]田丰. 猛追登月进度,“星舰”第三飞欲挑战高难项目[N]. 中国航天报, 2023.
TIAN F. Chasing the progress of the moon landing, the third flight of “Starship” wants to challenge the difficult project[N]. China Space News, 2023.
[70]张威震, 霍红磊, 解家春. 核热推进地面试验技术研究[J]. 宇航总体技术, 2019, 3(2): 44-53.
ZHANG W Z, HUO H L, XIE J C. Technical research on nuclear thermal propulsion ground tests[J]. Astronautical Systems Engineering Technology, 2019, 3(2): 44-53.
[71]EMRICH W, MORAN R, PEARSON J. Nuclear thermal rocket element environmental simulator(NTREES)upgrade activities[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2012.
[72]EMRICH W, MORAN R, PEARSON J. Nuclear thermal rocket element environmental simulator(NTREES)upgrade activities[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2012.
[73]安纳利·兰宁. 核火箭发动机反应堆[M]. 北京: 国防工业出版社, 2023.
ANATOLY L. Nuclear rocket engine reactor[M]. Beijing: National Defence Industry Press, 2023.
[74]WALTON J T. Program E L M: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements[J]. NASA Technical Memorandum, 1992(2): 62-65.
[75]CHENG G, ITO Y, ROSS D, et al. Numerical simulations of single flow element in a nuclear thermal thrust chamber[C]//39th AIAA Thermophysics Conference. Reston, Virginia: AIAA, 2007.
[76]刘继忠, 唐玉华, 龙杰, 等. 关于建立我国空间核动力源应用安全机制的建议[J]. 科学通报, 2020, 65(10): 875-881.
LIU J Z, TANG Y H, LONG J, et al. Suggestions for China on establishing safety mechanisms for space nuclear power source applications[J]. Chinese Science Bulletin, 2020, 65(10): 875-881.
[77]龙杰, 唐玉华. 外空核动力源应用的国内外法规体系概述及我国的对策[J]. 中国航天, 2020(5): 67-71.
LONG J, TANG Y H. An overview of international and national regulatory systems for the application of space nuclear power sources and practical suggestions for China[J]. Aerospace China, 2020(5): 67-71.
[78]苟子奕. 美国太空核动力政策研究[J]. 国际太空, 2021(4): 41-45.
GOU Z Y. Research on US space nuclear power policy[J]. Space International, 2021(4): 41-45.
[79]郭筱曦. 美国空间核动力近期政策与技术发展分析[J]. 国际太空, 2021(8): 4-8.
GUO X X. An analysis of the recent policy and technology development of space nuclear power in the United States[J]. Space international, 2021(8): 4-8.

Memo

Memo:
-
Last Update: 1900-01-01