[1] HASLETT R A. Space nuclear thermal propulsion program final report: PL-TR-95-1064[R]. Kirtland: [s.n.], 1995.
[2]SONNY M P. Space technology mission directorate game changing development program-nuclear thermal propulsion(NTP)FY19 annual review[R]. Huntsville, Alabama: Marshall Space Flight Center, 2019.
[3]STAORD T P. America at the threshold: report of the synthesis group on America's space exploration initiative[R]. Washington, D C: US Government Printing Office, 1991.
[4]Sierra Space Corp. Provides integration services for new nuclear propulsion systemas part of DARPA's DRACO program[Z]. 2021.
[5]General Atomics Corp. Completes DRACO nuclear thermal propulsion system design and test milestone[Z]. 2022.
[6]廖宏图. 空间核能源与核推进技术综述(3:固芯核热推进及其他先进概念方案)[J]. 空间推进, 2015, 9(3): 38-48.
LIAO H T. An overview of nuclear power and nuclear propulsion in space(part Ⅲ: solid core nuclear thermal propulsion and other advanced conceptual schemes)[J]. Space Propulsion, 2015, 9(3): 38-48.
[7]小威廉·埃姆里希. 核火箭推进原理[M]. 杭州: 浙江大学出版社, 2016.
EMRICH W J. Principles of nuclear rocket propulsion[M]. Hangzhou: Zhejiang University Press, 2016.
[8]科罗捷耶夫 A C. 核火箭发动机[M]. 上海: 上海交通大学出版社, 2020.
КОРОТЕЕВ А С. Nuclear rocket engine[M]. Shanghai: Shanghai Jiaotong University Press, 2020.
[9]Nerva Operations Office. Final report, NERVA engine development program and associated tasks, for the period 1961/7/10 through 1962/1/10[R]. Azusa, California: Aerojet-Ceneral Corporation, 1962.
[10]廖宏图. 核热推进技术综述[J]. 火箭推进, 2011, 37(4): 1-11.
LIAO H T. Overview of nuclear thermal propulsion technologies[J]. Journal of Rocket Propulsion, 2011, 37(4): 1-11.
[11]GABRIELLI R A, HERDRICH G. Review of nuclear thermal propulsion systems[J]. Progress in Aerospace Sciences, 2015, 79: 92-113.
[12]何伟锋, 向红军, 蔡国飙. 核火箭原理、发展及应用[J]. 火箭推进, 2005, 31(2): 37-43.
HE W F, XIANG H J, CAI G B. The fundamentals, developments and applications of nuclear rocket propulsion[J]. Journal of Rocket Propulsion, 2005, 31(2): 37-43.
[13]美国国家科学院, 工程院核医学院, 工程和物理科学司, 等. 载人火星探索中空间核动力推进[M]. 北京: 中国宇航出版社, 2023.
National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, et al. Space nuclear propulsion for human Mars exploration[M]. Beijing: China Astronautic Publishing House, 2023.
[14]The White House. National space policy of the United States of America[Z]. 2020.
[15]孙宗祥, 李文佳, 李一鸣. 俄罗斯“海燕” 核动力巡航导弹发展综述[J]. 战术导弹技术, 2022(5): 106-118.
SUN Z X, LI W J, LI Y M. Overview of the development of Russian Petrel nuclear-powered cruise missile[J]. Tactical Missile Technology, 2022(5): 106-118.
[16]范唯唯. 中国发布《2017—2045年航天运输系统发展路线图》[J]. 空间科学学报, 2018, 38(1): 6.
FAN W W. China releases roadmap for the development of space transportation system 2017—2045[J]. Chinese Journal of Space Science, 2018, 38(1): 6.
[17]中国航天大会. 2020 年宇航领域科学问题和技术难题发布[J]. 宇航学报, 2020, 41(9): 1.
China Space Conference. Release of scientific and technical problems in the field of aerospace in 2020[J]. Journal of Astronautics, 2020, 41(9): 1.
[18]中国航天大会. 2021年宇航领域科学问题和技术难题在中国航天大会发布[J]. 宇航学报, 2021, 42(5): 1.
China Space Conference. Release of scientific and technical problems in the field of aerospace in 2021[J]. Journal of Astronautics, 2021, 42(5): 1.
[19]赵磊. 2023年宇航领域科学问题和技术难题发布[N]. 中国日报, 2023-04-24.
ZHAO L. Release of scientific and technical problems in the field of aerospace in 2023[N]. China Daily, 2023-04-24.
[20]李春剑, 詹媛. 中国科协发布2023重大科学问题、工程技术难题[N]. 光明日报, 2023-10-23.
LI C J, ZHAN Y. China association for science and technology releases 2023 major scientific issues and engineering technical difficulties[N]. Guangming Daily, 2023-10-23.
[21]SERFIERT H S, MILLS M M. Problems of applications of nuclear energy to rocket propulsion: Jet Propulsion Laboratory[Z]. 1947.
[22]ROBBINS W. An historical perspective of the NERVA nuclear rocket engine technology program[C]//Conference on Advanced SEI Technologies. Reston, Virginia: AIAA, 1991.
[23]FINSETH J L. Rover nuclear rocket engine program: overview of Rover engine tests: 313-002-91-059[R]. Huntsville, Alabama: Sverdrup Technology Inc., 1991.
[24]杨玉新, 任全彬, 段艳娟, 等. 美俄核热推进技术发展现状与启示[J]. 固体火箭技术, 2023, 46(3): 399-409.
YANG Y X, REN Q B, DUAN Y J, et al. Development status and prospect of nuclear thermal propulsion technology in US and Russia[J]. Journal of Solid Rocket Technology, 2023, 46(3): 399-409.
[25]JOYNER C, LENTATI A, CICHON J. Multidisciplinary analysis of nuclear thermal propulsion design options for human exploration missions[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2006.
[26]DRAKE B G, WATTS K D. Human exploration of mars design reference architecture 5.0[R]. Houston, Texas: NASA Johnson Space Center, 2014.
[27]苏著亭, 杨继才, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016.
SU Z T, YANG J C, KE G T. Space nuclear power[M]. Shanghai: Shanghai Jiaotong University Press, 2016.
[28]HOUTS M G, KIM T, EMRICH W J, et al. The nuclear cryogenic propulsion stage[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2014.
[29]EMRICH W J. Nuclear cryogenic propulsion stage(NCPS)fuel element testing in the nuclear thermal rocket element environmental simulator(NTREES)[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2017.
[30]伍浩松, 张焰. 美拟于2025年示范核热推进系统[J]. 国外核新闻, 2021(5): 17.
WU H S, ZHANG Y. US plans to demonstrate nuclear thermal propulsion system in 2025[J]. Foreign Nuclear News, 2021(5): 17.
[31]LYNCHBURG V. BWXT to provide nuclear reactor engine and fuel for DARPA space project[Z]. 2023.
[32]DARPA. Demonstration rocket for agile cislunar operations(DRACO)[Z]. 2022.
[33]The White House. Memorandum on the national strategy for space nuclear power and propulsion(space policy directive-6)[Z]. 2020.
[34]U. S. Department for Energy. Energy for space[Z]. 2021.
[35]The White House. Promoting small modular reactors for national defense and space exploration[Z]. 2021.
[36]STONE C. Maneuver warfare in space: the strategic mandate for nuclear propulsion[R]. Arlington, VA: Mitchell Institute, 2022.
[37]马世俊, 唐玉华, 朱安文, 等. 空间核动力的进展[M]. 北京: 中国宇航出版社, 2019.
MA S J, TANG Y H, ZHU A W, et al. Advances in space nuclear power[M]. Beijing: China Astronautic Publishing House, 2019.
[38]徐友涛. 核热推进运载火箭技术发展综述[J]. 国际太空, 2017(9): 8-14.
XU Y T. Development review of nuclear thermal propulsion launch vehicle technologies[J]. Space International, 2017(9): 8-14.
[39]解家春, 赵守智. 核热推进堆芯方案的发展[J]. 原子能科学技术, 2012, 46(B12):889-895.
XIE J C, ZHAO S Z. Development of reactor core for nuclear thermal propulsion[J]. Atomic Energy Science and Technology, 2012, 46(B12):889-895.
[40]霍红磊, 安伟健, 解家春, 等. CERMET-SNRE堆芯物理计算分析[J]. 原子能科学技术, 2016, 50(12): 2150-2156.
HUO H L, AN W J, XIE J C, et al. Core physics calculation and analysis for CERMET-SNRE[J]. Atomic Energy Science and Technology, 2016, 50(12): 2150-2156.
[41]赵润喆, 霍红磊. 低浓铀核热火箭发动机SCCTE堆芯物理特性初步研究[J]. 原子能科学技术, 2021, 55(Sup.2): 221-227.
ZHAO R Z, HUO H L. Preliminary study on neutronic characteristic of LEU NTR reactor SCCTE core[J].Atomic Energy Science and Technology, 2021, 55(Sup.2): 221-227.
[42]李强, 解家春, 霍红磊. 核热推进钨基CERMET燃料模拟件制备工艺研究[J]. 世界有色金属, 2022(12): 169-171.
LI Q, XIE J C, HUO H L. Research of fabrication technology for CERMET fuel based tungsten used in nuclear thermal propulsion[J]. World Nonferrous Metals, 2022(12): 169-171.
[43]霍红磊, 赵守智, 解家春, 等. 采用钨基金属陶瓷燃料的核热推进反应堆掉落临界安全特性研究[J]. 载人航天, 2017, 23(3): 353-357.
HUO H L, ZHAO S Z, XIE J C, et al. Study on dropping criticality safety performance of nuclear thermal propulsion reactor with tungsten based CERMET fuel[J]. Manned Spaceflight, 2017, 23(3): 353-357.
[44]游尔胜, 石磊, 郑艳华, 等. 球床堆在空间核动力系统中的应用[J]. 原子能科学技术, 2015, 49(Sup.1): 75-80.
YOU E S, SHI L, ZHENG Y H, et al. Application of pebble bed reactor in space nuclear power system[J]. Atomic Energy Science and Technology, 2015, 49(Sup.1): 75-80.
[45]吉宇, 毛晨瑞, 孙俊, 等. 核热火箭发动机系统循环方案分析与设计[J]. 火箭推进, 2022, 48(1): 14-21.
JI Y, MAO C R, SUN J, et al. Analysis and design of system cycle for nuclear thermal rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(1): 14-21.
[46]韩梓超, 章静, 王明军, 等. 核热推进系统氢气物性及流动换热模型分析[J]. 原子能科学技术, 2022, 56(7): 1276-1284.
HAN Z C, ZHANG J, WANG M J, et al. Analysis of thermodynamic property, flow and heat transfer model of hydrogen in NTP system[J]. Atomic Energy Science and Technology, 2022, 56(7): 1276-1284.
[47]房玉良, 秦浩, 王成龙, 等. 高温、高流速氢气在圆管内流动换热特性研究[J]. 原子能科学技术, 2020, 54(10): 1762-1770.
FANG Y L, QIN H, WANG C L, et al. Heat transfer performance of high temperature and high velocity hydrogen flow inside circle tube[J]. Atomic Energy Science and Technology, 2020, 54(10): 1762-1770.
[48]HAN Z C, ZHANG J, WANG M J, et al. A modified system analysis code for thermo-hydraulic calculation of hydrogen in a nuclear thermal propulsion(NTP)system[J]. Annals of Nuclear Energy, 2021(164): 108632.
[49]刘忠恕. 核热火箭发动机系统方案研究[D]. 北京: 中国航天科技集团公司第一研究院, 2017.
LIU Z S. Study on the scheme of nuclear thermal rocket engine system[D]. Beijing: First Research Institute of China Aerospace Science and Technology Corporation, 2017.
[50]王浩泽, 李子亮, 吴宏雨, 等. 基于金属陶瓷堆芯1 000 kN核热火箭发动机系统及组件参数研究[J]. 载人航天, 2018, 24(5): 637-642.
WANG H Z, LI Z L, WU H Y, et al. Thruster system and component parameters of a 1 000 kN nuclear thermal rocket thruster based on ceramic-metallic reactor core[J]. Manned Spaceflight, 2018, 24(5): 637-642.
[51]王浩泽, 左安军, 霍红磊, 等. 110 kN核热火箭发动机系统方案选取与参数优化研究[J]. 原子能科学技术, 2019, 53(1): 30-37.
WANG H Z, ZUO A J, HUO H L, et al. System design selection and parametric optimization analysis of 110 kN nuclear thermal rocket engine[J]. Atomic Energy Science and Technology, 2019, 53(1): 30-37.
[52]朱岩, 马元, 南向谊, 等. 大推力核热火箭运载器及动力特性分析[J]. 载人航天, 2018, 24(3): 388-393.
ZHU Y, MA Y, NAN X Y, et al. Characteristic analysis of nuclear thermal rocket launcher and high thrust engine[J]. Manned Spaceflight, 2018, 24(3): 388-393.
[53]王三丙, 马元, 郭斯茂, 等. 核热火箭反应堆燃料对比分析[J]. 载人航天, 2018, 24(6): 784-795.
WANG S B, MA Y, GUO S M, et al. Comparison and analysis of nuclear thermal propulsion reactor fuel[J]. Manned Spaceflight, 2018, 24(6): 784-795.
[54]宋霁阳. 轻水堆堆芯热工物理耦合特性分析[D]. 哈尔滨: 哈尔滨工程大学, 2018.
SONG J Y. Analysis of coupling characteristics between thermal-hydraulics and neutronics for light-water reactor[D]. Harbin: Harbin Engineering University, 2018.
[55]钟科. 高温气冷堆[Z]. 2012.
[56]房玉良, 刘林, 孙海亮, 等. 核热推进反应堆燃料元件发展概述[J]. 宇航总体技术, 2020, 4(1): 63-70.
FANG Y L, LIU L, SUN H L, et al. Development of fuel elements in nuclear thermal propulsion system[J]. Astronautical Systems Engineering Technology, 2020, 4(1): 63-70.
[57]JOYNER C R, JENNINGS T, HANKS D E, et al. NTP engine system design and modeling[C]//ASCEND 2022.Reston, Virginia: AIAA, 2022.
[58]Aerojet General Corp. NERVA engine development program and associated tasks, contract year 1962, summary report, volume 1[R]. Azusa, California: [s.n.], 1962.
[59]张泽, 薛翔, 王园丁, 等. 空间核动力推进技术研究展望[J]. 火箭推进, 2021, 47(5): 1-13.
ZHANG Z, XUE X, WANG Y D, et al. Prospect of space nuclear power propulsion technology[J]. Journal of Rocket Propulsion, 2021, 47(5): 1-13.
[60]SAGER P. Radiation shield design considerations for nuclear rocket space vehicles[C]//Space Programs and Technologies Conference. Reston, Virginia: AIAA, 1992.
[61]宋旺旺, 杜金峰, 赖万昌, 等. 一种紧凑型星球表面反应堆辐射屏蔽初步设计[J]. 核电子学与探测技术, 2015, 35(2): 154-158.
SONG W W, DU J F, LAI W C, et al. A preliminary design of a compact radiation shielding of fission surface power reactor[J]. Nuclear Electronics & Detection Technology, 2015, 35(2): 154-158.
[62]胡伟峰, 申麟, 杨建民, 等. 低温推进剂长时间在轨的蒸发量控制技术进展[J]. 导弹与航天运载技术, 2009(6): 28-34.
HU W F, SHEN L, YANG J M, et al. Progress of study on transpiration control technology for orbit long-term applied cryogenic propellant[J]. Missiles and Space Vehicles, 2009(6): 28-34.
[63]胡伟峰, 申麟, 彭小波, 等. 低温推进剂长时间在轨的蒸发量控制关键技术分析[J]. 低温工程, 2011(3): 59-66.
HU W F, SHEN L, PENG X B, et al. Key technology analysis of boil-off control study on cryogenic propellant long-term application on orbit[J]. Cryogenics, 2011(3): 59-66.
[64]李鹏, 孙培杰, 包轶颖, 等. 低温推进剂长期在轨储存技术研究概述[J]. 载人航天, 2012, 18(1): 30-36.
LI P, SUN P J, BAO Y Y, et al. Research on long-term storage technology of cryogenic propellant in orbit[J]. Manned Spaceflight, 2012, 18(1): 30-36.
[65]李鹏, 孙培杰, 盛敏健, 等. 推进飞行器低温推进剂在轨贮存被动蒸发控制方案研究[J]. 载人航天, 2018, 24(1): 91-97.
LI P, SUN P J, SHENG M J, et al. Investigation on passive boil-off control scheme for orbital storage of cryogenic propellant in orbital transfer spacecraft[J]. Manned Spaceflight, 2018, 24(1): 91-97.
[66]胡聪, 蒋文兵, 孙培杰, 等. 低温推进剂空间零蒸发贮存技术研究进展[J]. 载人航天, 2022, 28(4): 487-498.
HU C, JIANG W B, SUN P J, et al. Advances of zero boil-off technologies for cryogenic propellant storage in space[J]. Manned Spaceflight, 2022, 28(4): 487-498.
[67]王亚军, 刘辉, 黄兵, 等. 长时间滑行低温推进剂管理关键技术分析[J]. 宇航总体技术, 2022, 6(3): 1-9.
WANG Y J, LIU H, HUANG B, et al. Key technology analysis of cryogenic propellant management during long-coast flight[J]. Astronautical Systems Engineering Technology, 2022, 6(3): 1-9.
[68]王磊, 厉彦忠, 马原, 等. 液体推进剂在轨加注技术与加注方案[J]. 航空动力学报, 2016, 31(8): 2002-2009.
WANG L, LI Y Z, MA Y, et al. On-orbit refilling technologies and schemes of liquid propellant[J]. Journal of Aerospace Power, 2016, 31(8): 2002-2009.
[69]田丰. 猛追登月进度,“星舰”第三飞欲挑战高难项目[N]. 中国航天报, 2023.
TIAN F. Chasing the progress of the moon landing, the third flight of “Starship” wants to challenge the difficult project[N]. China Space News, 2023.
[70]张威震, 霍红磊, 解家春. 核热推进地面试验技术研究[J]. 宇航总体技术, 2019, 3(2): 44-53.
ZHANG W Z, HUO H L, XIE J C. Technical research on nuclear thermal propulsion ground tests[J]. Astronautical Systems Engineering Technology, 2019, 3(2): 44-53.
[71]EMRICH W, MORAN R, PEARSON J. Nuclear thermal rocket element environmental simulator(NTREES)upgrade activities[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2012.
[72]EMRICH W, MORAN R, PEARSON J. Nuclear thermal rocket element environmental simulator(NTREES)upgrade activities[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2012.
[73]安纳利·兰宁. 核火箭发动机反应堆[M]. 北京: 国防工业出版社, 2023.
ANATOLY L. Nuclear rocket engine reactor[M]. Beijing: National Defence Industry Press, 2023.
[74]WALTON J T. Program E L M: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements[J]. NASA Technical Memorandum, 1992(2): 62-65.
[75]CHENG G, ITO Y, ROSS D, et al. Numerical simulations of single flow element in a nuclear thermal thrust chamber[C]//39th AIAA Thermophysics Conference. Reston, Virginia: AIAA, 2007.
[76]刘继忠, 唐玉华, 龙杰, 等. 关于建立我国空间核动力源应用安全机制的建议[J]. 科学通报, 2020, 65(10): 875-881.
LIU J Z, TANG Y H, LONG J, et al. Suggestions for China on establishing safety mechanisms for space nuclear power source applications[J]. Chinese Science Bulletin, 2020, 65(10): 875-881.
[77]龙杰, 唐玉华. 外空核动力源应用的国内外法规体系概述及我国的对策[J]. 中国航天, 2020(5): 67-71.
LONG J, TANG Y H. An overview of international and national regulatory systems for the application of space nuclear power sources and practical suggestions for China[J]. Aerospace China, 2020(5): 67-71.
[78]苟子奕. 美国太空核动力政策研究[J]. 国际太空, 2021(4): 41-45.
GOU Z Y. Research on US space nuclear power policy[J]. Space International, 2021(4): 41-45.
[79]郭筱曦. 美国空间核动力近期政策与技术发展分析[J]. 国际太空, 2021(8): 4-8.
GUO X X. An analysis of the recent policy and technology development of space nuclear power in the United States[J]. Space international, 2021(8): 4-8.