|Table of Contents|

Analysis on structural characteristics of nuclear thermal rocket reactor(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年04期
Page:
31-41
Research Field:
目次
Publishing date:

Info

Title:
Analysis on structural characteristics of nuclear thermal rocket reactor
Author(s):
ZHAO Runzhe LYU Zheng XIE Jiachun HUO Honglei
Research Institute of Reactor Engineering Technology, China Institute of Atomic Energy,Beijing 102413, China
Keywords:
nuclear rocket reactor structure
PACS:
TL99; V439.5
DOI:
10.3969/j.issn.1672-9374.2024.04.003
Abstract:
Nuclear thermal rockets have the advantages of large thrust and high specific impulse, offering significant advantages over conventional propulsion methods in long-distance and high-payload space missions. Compared with conventional ground-based reactors, nuclear thermal rocket reactors have strict requirements for size and weight, as well as high operating temperatures, significant thermal stress, and the need to withstand the harsh mechanical environment during launch. Therefore, a reasonable and stable structural design is necessary. Based on this requirement, a survey and summary of the structural design of the nuclear thermal rocket reactor is conducted in this acticle, mainly sorting out the structural design of NERVA-I, NERVA-II and CERMET fuel reactors in the United States. And then the foreign design experience is summarized and it provides reference for the iteration and implementation of nuclear thermal rocket program.

References:

[1] BOROWSKI S, CORBAN R, MCGUIRE M, et al. Nuclear thermal rocket/vehicle design options for future NASA missions to the moon and Mars[C]//Space Programs and Technologies Conference and Exhibit. Reston, Virginia: AIAA, 1993.
[2]苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016.
[3]HOWE S. Identification of archived design information for small class nuclear rockets[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 2005.
[4]EMRICH W, KIRK D. Design considerations for the nuclear thermal rocket element environmental simulator(NTREES)[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 2006.
[5]DARPA. NASA tap Lockheed Martin to design, build DRACO nuclear rocket for deep space missions[EB/OL]. https://www.breakingdefense.com/2023/07/darpa-nasa-tap-lockheed-martin-to-design-build-draco-nuclear-rocket-for-deep-space-missions, 2023.
[6]FINSETH J. Rover nuclear rocket engine program: Overview of rover engine tests[EB/OL]. https://www.semanticscholar.org/paper/Rover-nuclear-rocket-engine-program%3A-Overview-of-Finseth/bf743ca9a2a6060b91b2
d05c6635ee34981ee14d, 1991.
[7]SCHNITZLER B, BOROWSKI S. Small fast spectrum reactor designs suitable for direct nuclear thermal propul-sion[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2012.
[8]PEERY S D, PARSLEY R C, ANGHAIE S, et al. XNR2000:a near term nuclear thermal rocket concept[C]//AIP Conference Proceedings. Albuquerque, New Mexico:AIP, 1993.
[9]POWELL J, PANIAGUA J, MAISE G, et al. MITEE:an ultra lightweight nuclear engine for new and unique planetary science and exploration missions[C]//49th International Astronautical Congress.Melbourne: IAF, 1998.
[10]霍红磊, 安伟健, 解家春, 等. CERMET-SNRE堆芯物理计算分析[J]. 原子能科学技术, 2016, 50(12): 2150-2156.
HUO H L, AN W J, XIE J C, et al. Core physics calculation and analysis for CERMET-SNRE[J]. Atomic Energy Science and Technology, 2016, 50(12): 2150-2156.
[11]NAM S H, VENNERI P, CHOI J, et al. Preliminary design study of an innovative high-performance nuclear thermal rocket utilizing LEU fuel[EB/OL]. https://www.semanticscholar.org/paper/Preliminary-Design-Study-of-an-Innovative-Nuclear-Nam-Venneri/5ab8cb372d9f0900a73ea281a77f566a25e30958, 2015.
[12]VENNERI P, DEASON W, HUSEMEYER P, et al. Design of a tungsten cermet LEU-NTR[C]//Nuclear Emerging Technologies for Space 2014. Washington D C: NASA, 2014.
[13]EADES M, DEASON W, PATEL V. SCCTE: an LEU NTP concept with tungsten cermet fuel[R]. Idaho Falls, ID:Idaho National Laboratory, 2015.
[14]PATEL V, DEASON W, EADES M. Center for space nuclear research(CSNR)NTP design team report[R]. Idaho Falls, ID:Idaho National Laboratory, 2015.
[15]HUSEMEYER P J, PATEL V, VENNERI P F, et al. CSNR space propulsion optimization code: SPOC[C]//Nuclear and Emerging Technologies for Space. Albuquerque, New Mexico: [s.n.],2015.
[16]KIM Y, PAOLO V. A point design for a LEU composite NTP system: superb use of low enriched uranium(SULEU)[C]//Nuclear and Emerging Technologies for Space. [S.l.]: American Nuclear Society, 2016.
[17]VENNERI P, KIM Y. Advancements in the development of low enriched uranium nuclear thermal rockets[J]. Energy Procedia, 2017, 131: 53-60.
[18]ROMNES C J, CHAVEZ D E, MARTINEZ B J, et al. Low enriched uranium nuclear thermal rocket design inspired by the space nuclear thermal propulsion project[C]//Nuclear and Emerging Technologies for Space. [S.l.]:American Nuclear Society, 2019.
[19]BENENSKY K, WANG M J, NIEMINEN J, et al. Preliminary analysis of low-enriched uranium(LEU)ultra high temperature nuclear thermal rockets capable of 1 100 s specific impulse[C]//Nuclear and Emerging Technologies for Space.[S.l.]:American Nuclear Society Huntsville, 2016.
[20]LIN C S, YOUINOU G J. Design and analysis of a 250 MW plate-fuel reactor for nuclear thermal propulsion[C]//Nuclear and Emerging Technologies for Space. [S.l.]:American Nuclear Society, 2020.
[21]POSTON D I. Design comparison of nuclear thermal rocket concepts[C]//Nuclear and Emerging Technologies for Space. [S.l.]:American Nuclear Society, 2018.
[22]赵润喆, 霍红磊, 赵爱虎, 等. 低浓铀核热火箭堆芯研究设计进展[J]. 东北电力大学学报, 2021, 41(3): 78-84.
ZHAO R Z, HUO H L, ZHAO A H, et al. Research and design progress of low enriched uranium nuclear thermal rocket core[J]. Journal of Northeast Electric Power University, 2021, 41(3): 78-84.
[23]赵润喆, 霍红磊. 低浓铀核热火箭发动机SCCTE堆芯物理特性初步研究[J]. 原子能科学技术, 2021, 55(Sup.2): 221-227.
ZHAO R Z, HUO H L. Preliminary study on neutronic characteristic of LEU NTR reactor SCCTE core[J]. Atomic Energy Science and Technology, 2021, 55(S2): 221-227.
[24]BRIDGES J M, BROWN W S, CALL D W.Evaluation of passive re-entry approach[R]. WANL-TNR-209, 1965.
[25]HUSSEY C C, WOIKE O G, ZWICK J. Conceptual mechanical design for a fast energy spectrum nuclear rocket engine[EB/OL]. https://www.semanticscholar.org/paper/Conceptual-Mechanical-Design-for-a-Fast-Energy- Hussey-Woike/f8dea748d8597e550d3760cb7e2491d1ba 9a34b4, 1965.
[26]TUCKER W C, CHOWDHURY P, ABBOTT L J, et al. Toward an in-depth material model for cermet nuclear thermal rocket fuel elements[J]. Nuclear Technology, 2021, 207(6): 825-835.

Memo

Memo:
-
Last Update: 1900-01-01