|Table of Contents|

Thermal stress safety analysis of nuclear thermal propulsion reactor fuel elements(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年04期
Page:
83-93
Research Field:
目次
Publishing date:

Info

Title:
Thermal stress safety analysis of nuclear thermal propulsion reactor fuel elements
Author(s):
ZHOU Zhifan ZHANG Jinɡ WU Yinɡwei HE Yanan GUO Kailun WANG MinɡjunSU Guanɡhui QIU Suizhenɡ TIAN Wenxi
School of Nuclear Science Technology, Xi'an Jiaotong University, Xi'an 710049, China
Keywords:
nuclear thermal propulsion fuel element thermal stress fluid-structure interaction safety analysis
PACS:
TL352.1
DOI:
10.3969/j.issn.1672-9374.2024.04.008
Abstract:
In nuclear thermal propulsion, the very-high-temperature gas-cooled reactor core operates under challenging service conditions including high heat flux, steep power gradients, significant temperature difference, and intense coolant flow erosion. In this environment, there is a risk of structural failure due to stress concentration in the hexagonal fuel elements, which can potentially impact the safety performance of the nuclear reactor fuel elements. To explore the thermal stress behavior and thermal safety boundaries of nuclear thermal propulsion fuel elements, with a focus on NERVA-type nuclear thermal propulsion reactors, a symmetrical model is established using the basic unit of densely packed fuel components inside the reactor, which is conducted for(U, Zr)C graphite-based composite fuel elements within the reactor, under high-temperature, high-flow hydrogen propulsion conditions, evaluating the risk of high-temperature melting and structural failure. The research findings indicate that under the operating conditions of nuclear thermal propulsion reactors, fuel elements experience non-uniform internal heat distribution due to the arrangement of their coolant channels and the cooling effects of connecting pipe elements. The accumulation of radial temperature differences leading to different thermal expansion along the axial direction is the primary cause of structural failure in fuel elements. Combining the analysis of temperature-stress field distribution within the fuel elements and the factors influencing it, this research can provide optimization ideas and guidelines for the safety design of nuclear thermal propulsion systems.

References:

[1] 廖宏图. 核热推进技术综述[J]. 火箭推进, 2011, 37(4): 1-11.
LIAO H T. Overview of nuclear thermal propulsion technologies[J]. Journal of Rocket Propulsion, 2011, 37(4): 1-11.
[2]苏光辉, 章静, 王成龙. 核能在未来载人航天中的应用[J]. 载人航天, 2020, 26(1): 1-13.
SU G H, ZHANG J, WANG C L. Application of nuclear energy in future manned space flight[J]. Manned Spaceflight, 2020, 26(1): 1-13.
[3]朱安文, 刘磊, 马世俊, 等. 空间核动力在深空探测中的应用及发展综述[J]. 深空探测学报, 2017, 4(5): 397-404.
ZHU A W, LIU L, MA S J, et al. An overview of the use and development of nuclear power system in deep space exploration[J]. Journal of Deep Space Exploration, 2017, 4(5): 397-404.
[4]张泽, 薛翔, 王园丁, 等. 空间核动力推进技术研究展望[J]. 火箭推进, 2021, 47(5): 1-13.
ZHANG Z, XUE X, WANG Y D, et al. Prospect of space nuclear power propulsion technology[J]. Journal of Rocket Propulsion, 2021, 47(5): 1-13.
[5]于远航. 核推进将迎来发展良机[J]. 太空探索, 2021(9): 3.
YU Y H. Nuclear propulsion will usher in a good opportunity for development[J]. Space Exploration, 2021(9): 3.
[6]吉宇, 毛晨瑞, 孙俊, 等. 核热火箭发动机系统循环方案分析与设计[J]. 火箭推进, 2022, 48(1): 14-21.
JI Y, MAO C R, SUN J, et al. Analysis and design of system cycle for nuclear thermal rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(1): 14-21.
[7]TAUB J M. Review of fuel element development for nuclear rocket engines[Z]. 1975.
[8]解家春, 霍红磊, 苏著亭, 等. 核热推进技术发展综述[J]. 深空探测学报, 2017, 4(5): 417-429.
XIE J C, HUO H L, SU Z T, et al. Review of nuclear thermal propulsion technology development[J]. Journal of Deep Space Exploration, 2017, 4(5): 417-429.
[9]张梦龙, 张悦, 王宝和. 空间核推进系统综述与展望[J]. 兵器装备工程学报, 2018, 39(9): 96-100.
ZHANG M L, ZHANG Y, WANG B H. Review and prospect of space nuclear propulsion system[J]. Journal of Ordnance Equipment Engineering, 2018, 39(9): 96-100.
[10]GABRIELLI R A, HERDRICH G. Review of nuclear thermal propulsion systems[J]. Progress in Aerospace Sciences, 2015, 79: 92-113.
[11]STEWART M, SCHNITZLER B G. A comparison of materials issues for cermet and graphite-based NTP fuels[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2013.
[12]LUTHER L L. Performance of(U, Zr)C-Graphite(Composite)and of(U, Zr)C(Carbide)fuel elements in the nuclear furnace 1 test reactor[R]. Los Alamos: Los Alamos Scientific Laboratory, 1973.
[13]WEBB J A, CHARIT I. Analytical determination of thermal conductivity of W-UO2 and W-UN CERMET nuclear fuels[J]. Journal of Nuclear Materials, 2012, 427(1/2/3): 87-94.
[14]STEWART M, SCHNITZLER B. Thermal hydraulics and structural analysis of the small nuclear rocket engine(SNRE)core[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2007.
[15]FITTJE J E, SCHNITZLER B G. Parametric analyses of a 75 kN thrust class composite fuel based NTR engine[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2014.
[16]DUAN Z M, ZHANG J, WU Y W, et al. Multi-physics coupling analysis on neutronics, thermal hydraulic and mechanics characteristics of a nuclear thermal propulsion reactor[J]. Nuclear Engineering and Design, 2022, 399: 112042.
[17]MENTER F. Zonal two equation k-ω turbulence models for aerodynamic flows[C]//23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston, Virginia: AIAA, 1993.
[18]DURHAM F P. Nuclear engine definition study preliminary report[R]. LA5044-MS, 1972.
[19]SCHNITZLER B, BOROWSKI S. Neutronics models and analysis of the small nuclear rocket engine(SNRE)[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2007.
[20]韩梓超, 章静, 王明军, 等. 核热推进系统氢气物性及流动换热模型分析[J]. 原子能科学技术, 2022, 56(7): 1276-1284.
HAN Z C, ZHANG J, WANG M J, et al. Analysis of thermodynamic property, flow and heat transfer model of hydrogen in NTP system[J]. Atomic Energy Science and Technology, 2022, 56(7): 1276-1284.
[21]MATT K, DAN K. Full-core coupled neutronic, thermal-hydraulic, and thermo-mechanical analysis of low-enriched uranium nuclear thermal propulsion reactors[J]. Energies, 2022, 15(19): 7007.
[22]KATOH Y, VASUDEVAMURTHY G, NOZAWA T, et al. Properties of zirconium carbide for nuclear fuel applications[J]. Journal of Nuclear Materials, 2013, 441(1/2/3): 718-742.

Memo

Memo:
-
Last Update: 1900-01-01