[1] 廖宏图. 核热推进技术综述[J]. 火箭推进, 2011, 37(4): 1-11.
LIAO H T. Overview of nuclear thermal propulsion technologies[J]. Journal of Rocket Propulsion, 2011, 37(4): 1-11.
[2]苏光辉, 章静, 王成龙. 核能在未来载人航天中的应用[J]. 载人航天, 2020, 26(1): 1-13.
SU G H, ZHANG J, WANG C L. Application of nuclear energy in future manned space flight[J]. Manned Spaceflight, 2020, 26(1): 1-13.
[3]朱安文, 刘磊, 马世俊, 等. 空间核动力在深空探测中的应用及发展综述[J]. 深空探测学报, 2017, 4(5): 397-404.
ZHU A W, LIU L, MA S J, et al. An overview of the use and development of nuclear power system in deep space exploration[J]. Journal of Deep Space Exploration, 2017, 4(5): 397-404.
[4]张泽, 薛翔, 王园丁, 等. 空间核动力推进技术研究展望[J]. 火箭推进, 2021, 47(5): 1-13.
ZHANG Z, XUE X, WANG Y D, et al. Prospect of space nuclear power propulsion technology[J]. Journal of Rocket Propulsion, 2021, 47(5): 1-13.
[5]于远航. 核推进将迎来发展良机[J]. 太空探索, 2021(9): 3.
YU Y H. Nuclear propulsion will usher in a good opportunity for development[J]. Space Exploration, 2021(9): 3.
[6]吉宇, 毛晨瑞, 孙俊, 等. 核热火箭发动机系统循环方案分析与设计[J]. 火箭推进, 2022, 48(1): 14-21.
JI Y, MAO C R, SUN J, et al. Analysis and design of system cycle for nuclear thermal rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(1): 14-21.
[7]TAUB J M. Review of fuel element development for nuclear rocket engines[Z]. 1975.
[8]解家春, 霍红磊, 苏著亭, 等. 核热推进技术发展综述[J]. 深空探测学报, 2017, 4(5): 417-429.
XIE J C, HUO H L, SU Z T, et al. Review of nuclear thermal propulsion technology development[J]. Journal of Deep Space Exploration, 2017, 4(5): 417-429.
[9]张梦龙, 张悦, 王宝和. 空间核推进系统综述与展望[J]. 兵器装备工程学报, 2018, 39(9): 96-100.
ZHANG M L, ZHANG Y, WANG B H. Review and prospect of space nuclear propulsion system[J]. Journal of Ordnance Equipment Engineering, 2018, 39(9): 96-100.
[10]GABRIELLI R A, HERDRICH G. Review of nuclear thermal propulsion systems[J]. Progress in Aerospace Sciences, 2015, 79: 92-113.
[11]STEWART M, SCHNITZLER B G. A comparison of materials issues for cermet and graphite-based NTP fuels[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2013.
[12]LUTHER L L. Performance of(U, Zr)C-Graphite(Composite)and of(U, Zr)C(Carbide)fuel elements in the nuclear furnace 1 test reactor[R]. Los Alamos: Los Alamos Scientific Laboratory, 1973.
[13]WEBB J A, CHARIT I. Analytical determination of thermal conductivity of W-UO2 and W-UN CERMET nuclear fuels[J]. Journal of Nuclear Materials, 2012, 427(1/2/3): 87-94.
[14]STEWART M, SCHNITZLER B. Thermal hydraulics and structural analysis of the small nuclear rocket engine(SNRE)core[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2007.
[15]FITTJE J E, SCHNITZLER B G. Parametric analyses of a 75 kN thrust class composite fuel based NTR engine[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2014.
[16]DUAN Z M, ZHANG J, WU Y W, et al. Multi-physics coupling analysis on neutronics, thermal hydraulic and mechanics characteristics of a nuclear thermal propulsion reactor[J]. Nuclear Engineering and Design, 2022, 399: 112042.
[17]MENTER F. Zonal two equation k-ω turbulence models for aerodynamic flows[C]//23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston, Virginia: AIAA, 1993.
[18]DURHAM F P. Nuclear engine definition study preliminary report[R]. LA5044-MS, 1972.
[19]SCHNITZLER B, BOROWSKI S. Neutronics models and analysis of the small nuclear rocket engine(SNRE)[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2007.
[20]韩梓超, 章静, 王明军, 等. 核热推进系统氢气物性及流动换热模型分析[J]. 原子能科学技术, 2022, 56(7): 1276-1284.
HAN Z C, ZHANG J, WANG M J, et al. Analysis of thermodynamic property, flow and heat transfer model of hydrogen in NTP system[J]. Atomic Energy Science and Technology, 2022, 56(7): 1276-1284.
[21]MATT K, DAN K. Full-core coupled neutronic, thermal-hydraulic, and thermo-mechanical analysis of low-enriched uranium nuclear thermal propulsion reactors[J]. Energies, 2022, 15(19): 7007.
[22]KATOH Y, VASUDEVAMURTHY G, NOZAWA T, et al. Properties of zirconium carbide for nuclear fuel applications[J]. Journal of Nuclear Materials, 2013, 441(1/2/3): 718-742.