[1] ALTSEIMER J H, MADER G F, STEWART J J. Operating characteristics and requirements for the NERVA flight engine[J]. Journal of Spacecraft and Rockets, 1971, 8(7): 766-773.
[2]陈彦舟. 美国核动力推进发动机最新发展概览[C]//中国核学会2021年学术年会. [S.l.]: [s.n.], 2021.
[3]廖宏图. 核热推进技术综述[J]. 火箭推进, 2011, 37(4): 1-11.
LIAO H T. Overview of nuclear thermal propulsion technologies[J]. Journal of Rocket Propulsion, 2011, 37(4): 1-11.
[4]戴进池, 王志远. 俄罗斯空间核动力技术的发展[J]. 国防科技, 2001(17): 10-11.
DAI J C, WANG Z Y. The development of russian space nuclear power technology[J]. Defense Technology Review, 2001(17): 10-11.
[5]解家春, 霍红磊, 苏著亭, 等. 核热推进技术发展综述[J]. 深空探测学报, 2017, 4(5): 417-429.
XIE J C, HUO H L, SU Z T, et al. Review of nuclear thermal propulsion technology development[J]. Journal of Deep Space Exploration, 2017, 4(5): 417-429.
[6]杭观荣, 洪鑫, 康小录. 国外空间推进技术现状和发展趋势[J]. 火箭推进, 2013, 39(5): 7-15.
HANG G R, HONG X, KANG X L. Current status and development trend of space propulsion technologies abroad[J]. Journal of Rocket Propulsion, 2013, 39(5): 7-15.
[7]苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016: 11-58.
[8]WALTON L, ALES M. SNTP program fuel element design[C]//29th Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 1993.
[9]CORRINGTON L C. The nuclear rocket program: Its status and plans[J]. Journal of Spacecraft and Rockets, 1969, 6(4): 465-470.
[10]RICE C M, ARNOLD W H. Recent NERVA technology development[J]. Journal of Spacecraft and Rockets, 1969, 6(5): 565-569.
[11]GRIMM T, HAMKE R. NERVA derived engine and operations concept[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2006.
[12]BENNETT G. Space nuclear power: opening the final frontier[C]//4th International Energy Conversion Engineering Conference and Exhibit(IECEC). Reston, Virigina: AIAA, 2006.
[13]BOROWSKI S K, MCCURDY D R, PACKARD T W. Nuclear thermal rocket(NTR)propulsion: A proven game-changing technology for future human exploration missions[R]. E-18199, 2012.
[14]VADIM Z, VLADIMIR P. Russian nuclear rocket engine design for Mars exploration[J]. Tsinghua Science and Technology, 2007, 12(3): 256-260.
[15]MIKE H, MELISSA V D, TOM G, et al. The case of nuclear propulsion[Z]. 2003.
[16]吉宇, 毛晨瑞, 孙俊, 等. 核热火箭发动机系统循环方案分析与设计[J]. 火箭推进, 2022, 48(1): 14-21.
JI Y, MAO C R, SUN J, et al. Analysis and design of system cycle for nuclear thermal rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(1): 14-21.
[17]王戈, 郎明刚, 李家文, 等. 核热火箭发动机循环方案对比分析[J]. 载人航天, 2019, 25(2): 196-201.
WANG G, LANG M G, LI J W, et al. Comparison and analysis of cycle schemes in nuclear thermal rocket engine[J]. Manned Spaceflight, 2019, 25(2): 196-201.
[18]冯致远, 张昊春, 吉宇, 等. 航天器核动力推进系统热力学性能研究[J]. 载人航天, 2016, 22(6): 797-804.
FENG Z Y, ZHANG H C, JI Y, et al. Study on thermodynamic performance of nuclear power propulsion system in spacecraft[J]. Manned Spaceflight, 2016, 22(6): 797-804.
[19]王浩泽, 左安军, 霍红磊, 等. 110 kN核热火箭发动机系统方案选取与参数优化研究[J]. 原子能科学技术, 2019, 53(1): 30-37.
WANG H Z, ZUO A J, HUO H L, et al. System design selection and parametric optimization analysis of 110 kN nuclear thermal rocket engine[J]. Atomic Energy Science and Technology, 2019, 53(1): 30-37.
[20]房玉良,王成龙,田文喜,等. 100 kN核热推进系统方案热工设计分析[C]//第六届空天动力联合会议. 成都: [s.n.], 2022.
[21]FITTJE J E, BOROWOSKI S, SCHNITZLER B G. Revised point of departure design options for nuclear thermal propulsion[C]//AIAA SPACE 2015 Conference and Exposition. Reston, Virginia: AIAA, 2015.