[1] DINDA S, VUCHURU K, KONDA S, et al. Heat management in supersonic/hypersonic vehicles using endothermic fuel: perspective and challenges[J]. ACS Omega, 2021, 6(40): 26741-26755.
[2]张晓军, 高玉闪, 杨永强, 等. 我国液氧煤油发动机技术发展概述[J]. 中国航天, 2023(5): 9-15.
ZHANG X J, GAO Y S, YANG Y Q, et al. Overview of the development of liquid oxygen/kerosene engine technology in China[J]. Aerospace China, 2023(5): 9-15.
[3]LIU Y Y, CHEN R, LIU J, et al. Research progress of catalysts and initiators for promoting the cracking of endothermic hydrocarbon fuels[J]. Transactions of Tianjin University, 2022, 28(3): 199-213.
[4]WANG C, DU C P, SHANG J X, et al. A comprehensive review of the thermal cracking stability of endothermic hydrocarbon fuels[J]. Journal of Analytical and Applied Pyrolysis, 2023, 169: 105867.
[5]ZUO J Y, ZHANG S L, WEI J F, et al. Effects of inflow parameters on thermal protection and drag reduction characteristics for hydrocarbon fueled supersonic film with combustion[J]. Case Studies in Thermal Engineering, 2023, 43: 102822.
[6]赵宏亮, 张蒙正. 超燃冲压发动机推阻力特性研究综述[J]. 火箭推进, 2014, 40(6): 44-50.
ZHAO H L, ZHANG M Z. Investigation of thrust/drag property of scramjet[J]. Journal of Rocket Propulsion, 2014, 40(6): 44-50.
[7]唐亮, 李平, 周立新. 液体火箭发动机液膜冷却研究综述[J]. 火箭推进, 2020, 46(1): 1-12.
TANG L, LI P, ZHOU L X. Review on liquid film cooling of liquid rocket engine[J]. Journal of Rocket Propulsion, 2020, 46(1): 1-12.
[8]CHENG X, BI Q C, LAN H P, et al. Flow and heat transfer characteristics of coal-based rocket kerosene in mini-tube with ultra-high parameters[J]. International Communications in Heat and Mass Transfer, 2022, 135: 106099.
[9]潘利生, 郝亨隆, 姚子康, 等. 高速飞行器减阻降热研究进展[J]. 力学进展, 2023, 53(4): 793-818.
PAN L S, HAO H L, YAO Z K, et al. Current status of research on reducing drag and cooling of high-speed aircraft[J]. Advances in Mechanics, 2023, 53(4): 793-818.
[10]WEI J F, ZHANG S L, WANG H Y, et al. Effects of fuel conversion ratio on cooling and drag reduction performance for supersonic film using gaseous hydrocarbon fuel[J]. Applied Thermal Engineering, 2022, 216: 119181.
[11]BOROVIK I, STROKACH E, KOZLOV A, et al. Influence of polyisobutylene kerosene additive on combustion efficiency in a liquid propellant rocket engine[J]. Aerospace, 2019, 6(12): 129.
[12]RUSHD S, FERROUDJI H, YOUSUF H, et al. Applications of drag reducers for the pipeline transportation of heavy crude oils: A critical review and future research directions[J]. The Canadian Journal of Chemical Engineering, 2024, 102(1): 438-458.
[13]IVCHENKO P V, NIFANT'EV I E, TAVTORKIN A V. Polyolefin drag reducing agents(review)[J]. Petroleum Chemistry, 2016, 56(9): 775-787.
[14]GUERSONI V C B, BANNWART A C, DESTEFANI T, et al. Comparative study of drag reducers for light hydrocarbon flow[J]. Petroleum Science and Technology, 2015, 33(8): 943-951.
[15]HASSANEAN M H, AWAD M E, MARWAN H, et al. Studying the rheological properties and the influence of drag reduction on a waxy crude oil in pipeline flow[J]. Egyptian Journal of Petroleum, 2016, 25(1): 39-44.
[16]LEE K H, ZHANG K, CHOI H J. Time dependence of turbulent drag reduction efficiency of polyisobutylene in kerosene[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(4): 499-502.
[17]GLUSHKOV D O, KUZNETSOV G V, NIGAY A G, et al. Influence of gellant and drag-reducing agent on the ignition characteristics of typical liquid hydrocarbon fuels[J]. Acta Astronautica, 2020, 177: 66-79.
[18]李文端, 李天华, 张洁辉, 等. 聚甲基丙烯酸癸酯溶液的减阻性能和抗剪切性能的研究[J]. 油田化学, 1990, 7(2): 156-161.
LI W D, LI T H, ZHANG J H, et al. Studies on drag reduction effectiveness and resistance to degradation of poly(decyl methacrylate)solution[J]. Oilfield Chemistry, 1990, 7(2): 156-161.
[19]杨士林, 朱勤勤, 吴国光, 等. 油品流动减阻剂的研制(Ⅰ): EP 型减阻剂[J]. 油田化学, 1985, 2(2): 123-130.
YANG S L, ZHU Q Q, WU G G, et al. Reduction of turbulent drag in the flow of fuel oils by dilute polymer solutions(Ⅰ): By ethylene-propylene copolymers[J]. Oilfield Chemistry, 1985, 2(2): 123-130.
[20]GAPONOV V D, CHVANOV V K, FATUEV I Y, et al. The investigation of influence polyisobutilene additions to kerosene at the efficiency of combustion[J]. Heat Analysis and Thermodynamic Effects, 2011, 14: 295-312.
[21]杜宗罡, 朱成财, 吴金, 等. 火箭煤油降阻技术研究[J]. 火箭推进, 2017, 43(6): 32-37.
DU Z G, ZHU C C, WU J, et al. Investigation on drag-reduction technology of rocket kerosene[J]. Journal of Rocket Propulsion, 2017, 43(6): 32-37.
[22]杜宗罡, 符全军, 韩伟, 等. 液体火箭降阻煤油及其制备方法: CN106929109A[P]. 2017-07-07.
[23]罗玉宏, 游岳, 蒋榕培, 等. 添加减阻剂的火箭煤油流阻与传热特性研究[J]. 火箭推进, 2018, 44(5): 66-70.
LUO Y H, YOU Y, JIANG R P, et al. Study on flow resistance and heat transfer characteristics of rocket kerosene adding drag reducer[J]. Journal of Rocket Propulsion, 2018, 44(5): 66-70.
[24]阳倦成, 李凤臣, 周文武, 等. 黏弹性流体基铜纳米流体流动与传热实验研究[J]. 工程热物理学报, 2014, 35(2): 366-370.
YANG J C, LI F C, ZHOU W W, et al. Experimental investigation on flow and heat transfer of a viscoelastic fluid based Cu nanofluids[J]. Journal of Engineering Thermophysics, 2014, 35(2): 366-370.
[25]SUN B, ZHANG Z M, YANG D. Improved heat transfer and flow resistance achieved with drag reducing Cu nanofluids in the horizontal tube and built-in twisted belt tubes[J]. International Journal of Heat and Mass Transfer, 2016, 95: 69-82.
[26]张赞坚, 刘朝晖, 潘辉, 等. 低流阻火箭煤油的超临界压力流动与换热特性[J]. 西安交通大学学报, 2019, 53(1): 129-134.
ZHANG Z J, LIU Z H, PAN H, et al. Flow and heat transfer characteristics of low-flow resistance rocket kerosene under supercritical pressure[J]. Journal of Xi'an Jiaotong University, 2019, 53(1): 129-134.
[27]陈彦伯. 超临界压力下降阻煤油换热特性实验研究[D]. 西安: 西安建筑科技大学, 2019.
CHEN Y B. Experimental study on heat transfer characteristics of kerosene with supercritical pressure drop resistance[D]. Xi'an: Xi'an University of Architecture and Technology, 2019.
[28]GUO X D, CHEN X J, ZHOU W J, et al. Effect of polymer drag reducer on rheological properties of rocket kerosene solutions[J]. Materials, 2022, 15(9): 3343.
[29]MÜLLER-PLATHE F. Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59(5): 4894-4898.
[30]LEN M, RAMASAMY U S, LICHTER S, et al. Thickening mechanisms of polyisobutylene in polyalphaolefin[J]. Tribology Letters, 2017, 66(1): 5.
[31]KIM K, ADRIAN R J, BALACHANDAR S, et al. Dynamics of hairpin vortices and polymer-induced turbulent drag reduction[J]. Physical Review Letters, 2008, 100(13): 134504.
[32]PEREIRA A S, MOMPEAN G, SOARES E J. Modeling and numerical simulations of polymer degradation in a drag reducing plane Couette flow[J]. Journal of Non-Newtonian Fluid Mechanics, 2018, 256: 1-7.
[33]WHITE C M, MUNGAL M G. Mechanics and prediction of turbulent drag reduction with polymer additives[J]. Annual Review of Fluid Mechanics, 2008, 40(1): 235-256.
[34]DIMITROPOULOS C D, DUBIEF Y, SHAQFEH E S G, et al. Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow[J]. 2004, 17(1): 011705.
[35]杜宗罡, 史雪梅, 单世群, 等. 减阻航天煤油减阻机理与传热规律数值模拟[J]. 火箭推进, 2022, 48(1): 76-82.
DU Z G, SHI X M, SHAN S Q, et al. Numerical study on flow drag reduction mechanism and heat transfer process of polymer drag reducing rocket kerosene[J]. Journal of Rocket Propulsion, 2022, 48(1): 76-82.
[36]LI B, LI W X, ZHENG X, et al. Numerical study on influences of drag reducing additive in supercritical flow of kerosene in a millichannel[J]. Energies, 2021, 14(20): 6758.
[37]ZHONG F Q, FAN X J, YU G, et al. Heat transfer of aviation kerosene at supercritical conditions[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 543-550.
[38]唐明明. 减阻剂对煤油超临界流动与换热特性影响的数值研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[39]张文华. 黏弹性流体湍流减阻机理研究[D]. 北京: 中国石油大学(北京), 2018.
[40]李巍, 黄伟, 开金河. 减阻剂发展现状及在庆咸管道的应用[J]. 化学工程与装备, 2012(9): 140-142.
LI W, HUANG W, KAI J H. Development status of drag reducer and its application in Qingxian pipeline[J]. Chemical Engineering & Equipment, 2012(9): 140-142.
[41]ABUBAKAR A, AL-WAHAIBI Y, AL-WAHAIBI T, et al. Effect of pipe diameter on horizontal oil-water flow before and after addition of drag-reducing polymer(part I): flow patterns and pressure gradients[J]. Journal of Petroleum Science and Engineering, 2017, 153: 12-22.
[42]ABDULBARI H A, AMIR R. Drag reduction performance and stability of an organic polymer, surfactant, and their complexes[J]. Chemical Engineering & Technology, 2021, 44(12): 2333-2340.
[43]ELBING B R, WINKEL E S, SOLOMON M J, et al. Degradation of homogeneous polymer solutions in high shear turbulent pipe flow[J]. Experiments in Fluids, 2009, 47(6): 1033-1044.
[44]SHETTY A M, SOLOMON M J. Aggregation in dilute solutions of high molar mass poly(ethylene)oxide and its effect on polymer turbulent drag reduction[J]. Polymer, 2009, 50(1): 261-270.
[45]ZHAO M W, LIU S C, DAI C L, et al. Development and drag reduction behaviors of a water-in-water emulsion polymer drag reducer[J]. ACS Applied Polymer Materials, 2023, 5(5): 3707-3716.
[46]ASIDIN M A, SUALI E, JUSNUKIN T, et al. Review on the applications and developments of drag reducing polymer in turbulent pipe flow[J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1921-1932.
[47]VARSHNEY A, STEINBERG V. Drag enhancement and drag reduction in viscoelastic flow[J]. Physical Review Fluids, 2018, 3(10): 103302.
[48]TOMS B A, STRAWBRIDGE D J. Elastic and viscous properties of dilute solutions of polymethyl methacrylate in organic liquids[J]. Transactions of the Faraday Society, 1953, 49(1): 1225-1232.
[49]张波. 管道减阻剂实验评价系统[D]. 济南: 山东大学, 2010.
[50]NESYN G V, MANZHAI V N, SULEIMANOVA Y V, et al. Polymer drag-reducing agents for transportation of hydrocarbon liquids: Mechanism of action, estimation of efficiency, and features of production[J]. Polymer Science Series A, 2012, 54(1): 61-67.
[51]钱锦文, 王甦畛, 刘晓林, 等. 乙丙共聚物减阻和抗剪切性的研究[J]. 浙江大学学报, 1986, 20(3): 25-32.
QIAN J W, WANG S C, LIU X L, et al. Studies on reduction effectiveness and shearing resistance of ethyene-propylene copolymer[J]. Journal of Zhejiang University, 1986, 20(3): 25-32.
[52]DOS SANTOS W R, SPALENZA CASER E, SOARES E J, et al. Drag reduction in turbulent flows by diutan gum: A very stable natural drag reducer[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 276: 104223.
[53]STEELE A, BAYER I S, LOTH E. Pipe flow drag reduction effects from carbon nanotube additives[J]. Carbon, 2014, 77: 1183-1186.
[54]SOARES E J. Review of mechanical degradation and de-aggregation of drag reducing polymers in turbulent flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 276: 104225.
[55]HORN A F, MERRILL E W. Midpoint scission of macromolecules in dilute solution in turbulent flow[J]. Nature, 1984, 312: 140-141.
[56]YASUDA K, ARMSTRONG R C, COHEN R E. Shear flow properties of concentrated solutions of linear and star branched polystyrenes[J]. Rheologica Acta, 1981, 20(2): 163-178.
[57]KIM O K, LITTLE R C, PATTERSON R L, et al. Polymer structures and turbulent shear stability of drag reducing solutions[J]. Nature, 1974, 250: 408-410.
[58]CHURCH D C, PETERSON G I, BOYDSTON A J. Comparison of mechanochemical chain scission rates for linear versus three-arm star polymers in strong acoustic fields[J]. ACS Macro Letters, 2014, 3(7): 648-651.
[59]O'NEILL R T, BOULATOV R. Experimental quantitation of molecular conditions responsible for flow-induced polymer mechanochemistry[J]. Nature Chemistry, 2023, 15(9): 1214-1223.
[60]STRIEGEL A M. Influence of chain architecture on the mechanochemical degradation of macromolecules[J]. Journal of Biochemical and Biophysical Methods, 2003, 56(1/2/3): 117-139.
[61]CUSSUOL J D, SOARES E J, SIQUEIRA R N, et al. Polymer drag reduction regeneration[J]. Journal of Non-Newtonian Fluid Mechanics, 2023, 321: 105126.
[62]KALASHNIKOV V N. Degradation accompanying turbulent drag reduction by polymer additives[J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 103(2/3): 105-121.