|Table of Contents|

Design of an evaluation index system for endothermic hydrocarbon fuel based on analytic hierarchy process(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年05期
Page:
44-52
Research Field:
目次
Publishing date:

Info

Title:
Design of an evaluation index system for endothermic hydrocarbon fuel based on analytic hierarchy process
Author(s):
CHEN Xuejiao12WANG Xiaoyu12AN Gaojun3XU Ximeng3JIANG Rongpei12
1.Beijing Institute of Aerospace Testing Technology, Beijing 100074, China; 2.Beijing Key Laboratory of Research and Application forAerospace Green Propellants, Beijing 100074, China; 3.Systems Engineering Institute, Academy of Military Sciences, Beijing 100071, China
Keywords:
endothermic hydrocarbon fuel evaluation index system analytic hierarchy process judgment matrix weight value
PACS:
V511
DOI:
10.3969/j.issn.1672-9374.2024.05.004
Abstract:
To comprehensively assess the overall performance of endothermic hydrocarbon fuels, the indicators of various aspects including development, production, utilization, testing, and storage of endothermic hydrocarbon fuels were systematically integrated, and an evaluation index system for endothermic hydrocarbon fuels was constructed. By categorizing and organizing the performance indicators of endothermic hydrocarbon fuels, a three-tier hierarchical structure model was established using the Analytic Hierarchy Process(AHP). Expert scoring and consistency testing methods were employed to create and refine judgment matrix that adhere to logical calculations. The weight values of each indicator were determined by solving the judgment matrix, and the importance of each indicator was ranked. More than one hundred evaluation indicators involved in various stages of endothermic hydrocarbon fuels are integrated into a comprehensive evaluation system, which fills the gap from qualitative assessment to semi-quantitative assessment of the comprehensive performance for endothermic hydrocarbon fuels. This study is valuable for the evaluation and development of novel endothermic hydrocarbon fuels.

References:

[1] 国家市场监督管理总局. 3号喷气燃料: GB 6537—2018[S]. 北京: 中国标准出版社, 2018.
State Administration for Market Regulation. No.3 jet fuel: GB 6537—2018[S]. Beijing: Standards Press of China, 2018.
[2]毕载俊, 龚灿铮, 韩复旦, 等. 高闪点喷气燃料规范: GJB 560A—97[S]. 北京: 国家科学技术工业委员会, 1997.
[3]Turbine fuel, low volatility, JP-7: MIL-DTL-38219D[S]. [S.l.]: US Air Force, 1998.
[4]DGNB certification system: new buildings criteria set[S]. [S.l.]: DGNB, 2018.
[5]DGNB certification system-new buildings criteria set[S]. [S.l.]: DGNB, 2020.
[6]CASBEE for new construction technical manual[S]. [S.l.]: Research Committee on Comprehensive Environmental Assessment of Buildings, 2010.
[7]蒋德珑, 曹建军. 武器装备体系评估论证模型的构建研究[J]. 军事运筹与系统工程, 2014, 28(1): 47-51.
JIANG D L, CAO J J. Research on the construction of evaluation and demonstration model of weapon equipment system[J]. Military Operations Research and Systems Engineering, 2014, 28(1): 47-51.
[8]徐强, 金振中, 杨继坤, 等. 基于Fuzzy-AHP的武器装备作战试验鉴定指标体系评估[J]. 火力与指挥控制, 2021, 46(7): 175-180.
XU Q, JIN Z Z, YANG J K, et al. Evaluation of index system for weapons and equipments operational test based on the Fuzzy-AHP method[J]. Fire Control & Command Control, 2021, 46(7): 175-180.
[9]何能波, 吴红朴, 朱佳辰, 等. 基于改进灰色关联度的装备保障效能指标体系优化[J]. 舰船电子工程, 2023, 43(5): 164-170.
HE N B, WU H P, ZHU J C, et al. Optimization of equipment support efficiency index system based onimproved grey correlation degree[J]. Ship Electronic Engineering, 2023, 43(5): 164-170.
[10]寇昆湖, 刘登攀, 钱峰, 等. 基于改进层次分析法的无人机作战效能评估方法研究[J]. 舰船电子工程, 2023, 43(2): 110-114.
KOU K H,LIU D P, QIAN F, et al. Research on operational effectiveness evaluation of UAV based onimproved analytic hierarchy process[J]. Ship Electronic Engineering, 2023, 43(2): 110-114.
[11]裴楠. 一种半定量建筑火灾风险评估体系[J]. 中国公共安全(学术版), 2013(1): 24-30.
PEI N. A semi-quantitative building fire risk assessment system[J]. China Public Security(Academy Edition), 2013(1): 24-30.
[12]毛雨晗, 金彦, 欧阳惠卿, 等. 基于层次分析法与专家打分法的机械式停车设备安全评价指标体系研究[J]. 起重运输机械, 2023(3): 20-24.
MAO Y H, JIN Y, OUYANG H Q, et al. On safety evaluation indicator system of mechanical parking equipment based on analytic hierarchy process and expert scoring method[J]. Hoisting and Conveying Machinery, 2023(3): 20-24.
[13]ANSHEBO M A, MENGESHA W J, SOKIDO D L. Selection of the most appropriate sustainable buildings assessment categories and criteria for developing countries: case of Ethiopia[J]. Journal of Urban Planning and Development, 2023, 149(1): 1-17.
[14]高源. 整合碳排放评价的中国绿色建筑评价体系研究[D]. 天津: 天津大学, 2014.
GAO Y. Studies on the China's green building assessment system integrated assessment of carbon emissions[D]. Tianjin: Tianjin University, 2014.
[15]李建林, 李光辉, 马速良, 等. 一种基于层次分析法的氢能发电系统评估方法: CN112465270A[P]. 2021-03-09.
[16]魏杰. 基于层次分析法的Y智能楼宇评标指标体系研究[D]. 广州: 华南理工大学, 2011.
WEI J. Y Based on AHP evaluation index system of intelligent building[D]. Guangzhou: South China University of Technology, 2011.
[17]李永德. 基于层次分析法的燃气轮机故障诊断方法研究[D]. 成都: 西南石油大学, 2014.
LI Y D. Research on fault diagnosis method of gas turbine based on analytic hierarchy process[D]. Chengdu: Southwest Petroleum University, 2014.
[18]徐坚强, 刘小勇. 基于层次分析法的建筑火灾风险评估指标体系设计[J]. 武汉理工大学学报(信息与管理工程版), 2019, 41(4): 345-351.
XU J Q, LIU X Y. Design of building fire risk assessment index system based on analytic hierarchy process[J]. Journal of Wuhan University of Technology(Information & Management Engineering), 2019, 41(4): 345-351.
[19]林丹. 世界一流制造企业评价体系及其应用研究: 以中国制造企业为例[D]. 广州: 华南理工大学, 2021.
LIN D. Research on the evaluation system of world class manufacturing enterprises and its application[D]. Guangzhou: South China University of Technology, 2021.
[20]SHEN J K, ZHU G M, ZHANG M Q, et al. Safety analysis and countermeasure of tank car transportation based on fish bone diagram and analytic hierarchy process[J]. IOP Conference Series: Earth and Environmental Science, 2019, 233: 032023.
[21]王永臻. 冀中坳陷东北部石炭-二叠系煤成气资源潜力分析及有利区预测[D]. 北京: 中国地质大学, 2020.
WANG Y Z. Carboniferous-permian coal-derived gas resource potential analysis and favorable area prediction in the northeast of Jizhong depression[D]. Beijing: China University of Geosciences, 2020.
[22]张香文, 邹吉军, 潘伦. 先进航空航天液体燃料合成及应用[M]. 北京: 科学出版社, 2023.
[23]付伟, 李明, 陶志平. 世界航空燃料规格及进展[M]. 北京: 中国石化出版社, 2011.
[24]张丽静, 刘东升, 于存贵, 等. 高超声速飞行器[J]. 航空兵器, 2010, 17(2): 13-16.
ZHANG L J, LIU D S, YU C G, et al. Hypersonic aircraft[J]. Aero Weaponry, 2010, 17(2): 13-16.
[25]周伟星, 贾贞健. 冲压发动机碳氢燃料技术[M]. 北京: 国防工业出版社, 2019.
[26]王镜淇, 王成刚, 陈雪娇, 等. RBCC组合动力用液体推进剂研究进展[J]. 火箭推进, 2022, 48(6): 101-112.
WANG J Q, WANG C G, CHEN X J, et al. Research progress of liquid propellant development for RBCC engine[J]. Journal of Rocket Propulsion, 2022, 48(6): 101-112.
[27]高旭锋, 代萌, 郭士刚, 等. 喷气燃料热氧化安定性测定方法及其影响因素的研究进展[J]. 石油化工, 2022, 51(7): 857-862.
GAO X F, DAI M, GUO S G, et al. Research progress on determination methods of thermal oxidation stability of jet fuel and its influencing factors[J]. Petrochemical Technology, 2022, 51(7): 857-862.
[28]段永亮, 王慧琴, 张静, 等. 煤炭间接液化生产喷气燃料的发展现状与展望[J]. 合成材料老化与应用, 2021, 50(6): 121-124.
DUAN Y L, WANG H Q, ZHANG J, et al. Development status and prospects of indirect coal liquefaction to produce jet fuel[J]. Synthetic Materials Aging and Application, 2021, 50(6): 121-124.
[29]李进, 张世堂, 胡泽祥. 国内外喷气燃料润滑改进剂综述[J]. 合成润滑材料, 2020, 47(2): 26-30.
LI J, ZHANG S T, HU Z X. Reviews on jet fuel lubricating improvers at home and abroad[J]. Synthetic Lubricants, 2020, 47(2): 26-30.
[30]李琛, 左伟, 张翼鹏, 等. 军用航空发动机燃油泵低润滑性试验方法研究[J]. 航空标准化与质量, 2021(5): 9-11.
LI C, ZUO W, ZHANG Y P, et al. Research on low lubricity test method for military aviation engine fuel pumps[J]. Aeronautic Standardization & Quality, 2021(5): 9-11.
[31]刘朝晖, 宋晨阳, 陈强, 等. 吸热型碳氢燃料再生冷却性能评估方法[J]. 火箭推进, 2020, 46(2): 15-20.
LIU Z H, SONG C Y, CHEN Q, et al. Evaluation methods on regenerative cooling performance for endothermic hydrocarbon fuel[J]. Journal of Rocket Propulsion, 2020, 46(2): 15-20.
[32]马海波,马元,南向谊,等.PATR发动机发展历程简介及参数特性分析[J].火箭推进,2023,49(6):100-109.
MA H B, MA Y, NAN X Y, et al.Development history and parameter Propulsion, 2023,49(6):100-109.

Memo

Memo:
-
Last Update: 1900-01-01