|Table of Contents|

Molecular dynamics simulation of thermal decomposition mechanism for HAN based monopropellant(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年05期
Page:
106-113
Research Field:
目次
Publishing date:

Info

Title:
Molecular dynamics simulation of thermal decomposition mechanism for HAN based monopropellant
Author(s):
HUANG YongminLI XuboHU XuZHOU Xiushuang
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
Keywords:
monopropellant liquid rocket engine HAN-based propellant molecular dynamics simulation ReaxFF/lg thermal decomposition
PACS:
V434
DOI:
10.3969/j.issn.1672-9374.2024.05.010
Abstract:
In order to reveal the decomposition mechanism of hydroxylamine nitrate(HAN)based monopropellant in non catalytic monopropellant liquid rocket engine, molecular dynamic simulation method based on ReaxFF/lg force field was used to study both thethermal decomposition mechanism and the influence of propellant formulation. The calculation results show that there are two stages in the thermal decomposition process of the propellant. The first stage is the endothermic stage, where the hydrogen bonds of hydroxylamine nitrate and hydrazine nitrate in the propellant break and decompose to form hydroxylamine, hydrazine, and nitric acid. The endothermic stage is mainly affected by the number of hydrogen bonds in the monopropellant. The second stage is the propellant decomposition stage, which is triggered by the decomposition of nitric acid and hydroxylamine, generating NH2, NO2, and OH. OH is the main oxidizing substance that reacts with hydrazine and methanol to produce a large amount of water. The decomposition of hydrazine mainly depends on dehydrogenation with OH, and generates N2H3. N2 and H2 are the final products. The propellant formulation only has a significant impact on the reaction with OH. Reducing the proportion of methanol can significantly increase the reaction rate of fuel, while promoting the dehydrogenation of hydrazine molecules and increasing the initial decomposition rate of propellant. Increasing the content of hydroxylamine nitrate can promote the decomposition of methanol. However, due to the low rate constant of the reaction of hydrazine, the reaction rate of the propellant decomposition is reduced.

References:

[1] 周汉申. 单组元液体火箭发动机设计与研究[M]. 北京: 中国宇航出版社, 2009.
[2]陈锐达, 刘昌国, 关亮. 国外单组元变推力发动机应用与关键技术[J]. 火箭推进, 2020, 46(2): 1-8.
CHEN R D, LIU C G, GUAN L. Application and key technologies of foreign monopropellant throttling engine[J]. Journal of Rocket Propulsion, 2020, 46(2): 1-8.
[3]王新强, 邓康清, 李洪旭, 等. HAN基绿色推进剂点火技术研究进展[J]. 火箭推进, 2017, 43(2): 72-76.
WANG X Q, DENG K Q, LI H X, et al. Research progress on ignition of HAN-based green propellant[J]. Journal of Rocket Propulsion, 2017, 43(2): 72-76.
[4]禹天福. 空间化学推进技术的发展[J]. 火箭推进, 2005, 31(6): 23-29.
YU T F. Development of space chemical propulsion technology[J]. Journal of Rocket Propulsion, 2005, 31(6): 23-29.
[5]刘俊, 潘一力, 李伟, 等. C/SiC复合材料在高能HAN发动机上应用研究[J]. 火箭推进, 2017, 43(5): 63-68.
LIU J, PAN Y L, LI W, et al. Research on application of C/SiC composite in high-energy HAN-based thruster[J]. Journal of Rocket Propulsion, 2017, 43(5): 63-68.
[6]白梅杉, 於希乔,陆文杰, 等. 硝酸羟胺发动机喷注器特种流量分配方法[J]. 火箭推进, 2023, 49(5): 99-106.
BAI M S, YU X Q, LU W J, et al. Injector flow distribution method of a hydroxylamine nitrate thruster[J]. Journal of Rocket Propulsion, 2023, 49(5): 99-106.
[7]OOMMEN C, RAJARAMAN S, CHANDRU A, et al. Catalytic decomposition of hydroxylammonium nitrate monopropellant[C]//2011 International Conference on Chemistry and Chemical Process.[S.l.]:[s.n.], 2011.
[8]任晓光, 李明慧, 王爱琴, 等. 室温条件下硝酸羟胺的催化分解[J]. 催化学报, 2007, 28(1): 1-2.
REN X G, LI M H, WANG A Q, et al. Catalytic decomposition of hydroxyl ammonium nitrate at room temperature[J]. Chinese Journal of Catalysis, 2007, 28(1): 1-2.
[9]ZHANG Z P, LI B L, CHEN Q, et al. Catalytic decomposition of hydroxylamine nitrate and hydrazine nitrate using Ru/ZSM-5 catalyst under mild reaction conditions[J]. RSC Advances, 2022, 12(8): 4469-4474.
[10]周悦, 公绪滨, 方涛. 硝酸羟胺基无毒单组元推进剂应用探讨[J]. 导弹与航天运载技术, 2015(4): 32-35.
ZHOU Y, GONG X B, FANG T. Applicable discussion on HAN-based nontoxic monopropellant[J]. Missiles and Space Vehicles, 2015(4): 32-35.
[11]申连华, 项锴, 鲍世国, 等. 热分析法研究硝酸羟胺水溶液的分解[J]. 火箭推进, 2020, 46(5): 66-72.
SHEN L H, XIANG K, BAO S G, et al. Investigation on the decomposition process of hydroxyl ammonium nitrate solution by thermal analysis[J]. Journal of Rocket Propulsion, 2020, 46(5): 66-72.
[12]YETTER R A, YANG V. Development of meso and micro scale liquid propellant thruster[C]//41st Aerospace Sciences Meeting and Exhibit.Reston, Virigina: AIAA, 2003.
[13]余永刚, 李明, 周彦煌, 等. 液体推进剂液滴电点火特性的实验研究[J]. 含能材料, 2008, 16(5): 625-628.
YU Y G, LI M, ZHOU Y H, et al. Experimental study on electrical ignition properties of liquid propellant droplet[J]. Chinese Journal of Energetic Materials, 2008, 16(5): 625-628.
[14]RISHA G A, YETTER R A, YANG V. Electrolytic-induced decomposition and ignition of Han-based liquid monopropellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2007, 6(5): 575-588.
[15]CHAI W S, KOH K S, CHEAH K H, et al. Performance comparison between single and multi-electrode system for electrolytic decomposition of HAN[C]//30th International Symposium on Space Technology and Science.Kobe, Japan:[s.n.], 2015.
[16]CHAI W S, CHEAH K H, KOH K S, et al. Parametric studies of electrolytic decomposition of hydroxylammonium nitrate(HAN)energetic ionic liquid in microreactor using image processing technique[J]. Chemical Engineering Journal, 2016, 296: 19-27.
[17]CARLETON F B, KLEIN N, KRALLIS K, et al. Initiating reaction in liquid propellants by focused laser beams[J]. Combustion Science and Technology, 1993, 88(1): 33-41.
[18]WUCHERER E, CHRISTOFFERSON S, REED B. Assessment of high performance HAN-monopropellants[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 2000.
[19]MCPHERSON M D. Solid electrically controlled propellants: US9914671[P]. 2018-03-13.
[20]KATZAKIAN A, GRIX C. Method for controlling a high performance electrically controlled solution solid propellant: US8617327[P]. 2013-12-31.
[21]刘连池. ReaxFF反应力场的开发及其在材料科学中的若干应用[D]. 上海: 上海交通大学, 2012.
LIU L C. Development of ReaxFF reactive force field and several applications in materials science[D]. Shanghai: Shanghai Jiao Tong University, 2012.
[22]CURTISS L A, REDFERN P C, RAGHAVACHARI K. Gaussian-4 theory[J]. The Journal of Chemical Physics, 2007, 126(8): 84108.
[23]胡旭, 刘川, 王海丰, 等. Ir(100)面上HAN催化分解反应机理[J]. 火箭推进, 2021, 47(4): 79-86.
HU X, LIU C, WANG H F, et al. The catalytic decomposition mechanism of HAN on Ir(100)surface[J]. Journal of Rocket Propulsion, 2021, 47(4): 79-86.
[24]LI S T, LI M Z, ZHOU X S, et al. DFT study on decomposition of hydrazine nitrate on Ir(100)surface[J]. Computational and Theoretical Chemistry, 2022, 1217: 113917.
[25]WANG F P, CHEN L, GENG D S, et al. Thermal decomposition mechanism of CL-20 at different temperatures by ReaxFF reactive molecular dynamics simulations[J]. The Journal of Physical Chemistry A, 2018, 122(16): 3971-3979.
[26]LAN G C, LI J, ZHANG G Y, et al. Thermal decomposition mechanism study of 3-nitro-1, 2, 4-triazol-5-one(NTO): Combined TG-FTIR-MS techniques and ReaxFF reactive molecular dynamics simulations[J]. Fuel, 2021, 295: 120655.
[27]DÖNTGEN M, PRZYBYLSKI-FREUND M D, KRÖGER L C, et al. Automated discovery of reaction pathways, rate constants, and transition states using reactive molecular dynamics simulations[J]. Journal of Chemical Theory and Computation, 2015, 11(6): 2517-2524.

Memo

Memo:
-
Last Update: 1900-01-01