|Table of Contents|

Spectral-Fourier method for water hammer(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2012年03期
Page:
7-11
Research Field:
研究与设计
Publishing date:

Info

Title:
Spectral-Fourier method for water hammer
Author(s):
CHEN Hong-yu LIU Hong-jun LIU Shang
Xi’an Aerospace Propulsion Institute, Xi’an 710100, China
Keywords:
liquid rocket engine propellant transfer spectral-Fourier method
PACS:
V434-34
DOI:
-
Abstract:
The mathematical model of fluid transient inside propellant pipelines is introduced. A new algorithm is proposed to solve the nonlinear hyperbolic partial differential equations for gover- ning the fluid transient by spectral-Fourier method. The method is presented in detail with an illustration of the water hammer in a simple piping system connecting tank and valve. The water hammer and pressure oscillation formed in the pipeline when its valve is suddenly shut down were solved with the method. The corresponding simulation results are given and compared with the results obtained by method of characteristics and finite element method issued previously. The high frequency oscillation problem in the numerical calculation is also discussed.

References:

[1]WYLIE E B, STREETER V L. Fluid transient in systems [M]. Endlewood Cliffs, USA: Prentice Hall, 1993.
[2]RUTH E K, AIM H, BAKER R L, et al. Advanced liquid rocket engine transient model, AIAA1990-2299[R]. USA: AIAA, 1990.
[3]SAGNICK H D, KRFILL G. Numerical simulation of tran- sients in feed systems for cryogenic rocket engines, AIAA 95-2967 [R]. USA: AIAA, 1995.
[4]林景松, 王平阳, 高红, 等. 液体火箭发动机关机水击的数值模拟[J]. 上海航天, 2008, 25 (3): 53-57.
[5]张育林, 刘昆, 程谋森. 液体火箭发动机动力学理论与应用[M]. 北京: 科学出版社, 2005.
[6]KOLCIO K, HELMICKI A J, JAWEED S. Propusion sys- tem modeling for condition monitoring and control: part Ⅰ theoretical foundation, AIAA 94-3227[R]. USA: AIAA, 1994.
[7]KOLCIO K, HELMICKI A J, JAWEED S. Propusion sys- tem modeling for condition monitoring and control: partⅡ application to the SSME AIAA 94-3228[R]. USA: AIAA, 1994.
[8]刘昆, 张育林. 一维可压缩流的有限元状态空间模型[J]. 推进技术, 1999, 19(5): 62-66.
[9]MAJUMDAR A k. Numerical modeling of fluid transient by a finite volume procedure for rocket propulsion systems[C]// Proceedings of 4th ASME/JSME Joint Fluids Engineering Conference. Honolulu, Hawaii, USA: ASME/JSME, 2003: 2967-2974.
[10]TIJSSELING A S, BERGANT A. Meshless computation of water hammer [C]//Proceedings of 2nd IAHR Interna- tional Meeting of the Workgroup on Cavitation and Dy- namic Problems in Hydraulic Machinery and Systems. Timisoara, Romania: IAHR , 2007: 1-34.
[11]CANUTO C, QUARTERONI A. Approximation results for orthogonal polynomials in Sobolev spaces[J]. Math Compu, 1982, 38(1): 67-86.
[12]GUO B Y. Spectral methods and their applications [M]. Singapore: World Scientific, 1998.
[13]MA H P. Chebyschev-Legendre super spectral viscosity method for nonlinear conservation laws[J]. SIAM J. Numer. Anal., 1998, 35 (3): 893-908.
[14]SHEN Jie, TANG Tao. Spectral and high-order methods with applications[M]. Beijing: Science Press, 2006.
[15] 刘昆, 张育林. 推进剂供应管道的集中参数近似模型研究-模态近似模型[J]. 推进技术, 1998, 19(4): 41-45.

Memo

Memo:
-
Last Update: 1900-01-01