[1]WYLIE E B, STREETER V L. Fluid transient in systems [M]. Endlewood Cliffs, USA: Prentice Hall, 1993.
[2]RUTH E K, AIM H, BAKER R L, et al. Advanced liquid rocket engine transient model, AIAA1990-2299[R]. USA: AIAA, 1990.
[3]SAGNICK H D, KRFILL G. Numerical simulation of tran- sients in feed systems for cryogenic rocket engines, AIAA 95-2967 [R]. USA: AIAA, 1995.
[4]林景松, 王平阳, 高红, 等. 液体火箭发动机关机水击的数值模拟[J]. 上海航天, 2008, 25 (3): 53-57.
[5]张育林, 刘昆, 程谋森. 液体火箭发动机动力学理论与应用[M]. 北京: 科学出版社, 2005.
[6]KOLCIO K, HELMICKI A J, JAWEED S. Propusion sys- tem modeling for condition monitoring and control: part Ⅰ theoretical foundation, AIAA 94-3227[R]. USA: AIAA, 1994.
[7]KOLCIO K, HELMICKI A J, JAWEED S. Propusion sys- tem modeling for condition monitoring and control: partⅡ application to the SSME AIAA 94-3228[R]. USA: AIAA, 1994.
[8]刘昆, 张育林. 一维可压缩流的有限元状态空间模型[J]. 推进技术, 1999, 19(5): 62-66.
[9]MAJUMDAR A k. Numerical modeling of fluid transient by a finite volume procedure for rocket propulsion systems[C]// Proceedings of 4th ASME/JSME Joint Fluids Engineering Conference. Honolulu, Hawaii, USA: ASME/JSME, 2003: 2967-2974.
[10]TIJSSELING A S, BERGANT A. Meshless computation of water hammer [C]//Proceedings of 2nd IAHR Interna- tional Meeting of the Workgroup on Cavitation and Dy- namic Problems in Hydraulic Machinery and Systems. Timisoara, Romania: IAHR , 2007: 1-34.
[11]CANUTO C, QUARTERONI A. Approximation results for orthogonal polynomials in Sobolev spaces[J]. Math Compu, 1982, 38(1): 67-86.
[12]GUO B Y. Spectral methods and their applications [M]. Singapore: World Scientific, 1998.
[13]MA H P. Chebyschev-Legendre super spectral viscosity method for nonlinear conservation laws[J]. SIAM J. Numer. Anal., 1998, 35 (3): 893-908.
[14]SHEN Jie, TANG Tao. Spectral and high-order methods with applications[M]. Beijing: Science Press, 2006.
[15] 刘昆, 张育林. 推进剂供应管道的集中参数近似模型研究-模态近似模型[J]. 推进技术, 1998, 19(4): 41-45.