|Table of Contents|

Research on bend-twist coupling vibration of liquid rocket engine turbopump rotors(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2012年04期
Page:
17-25
Research Field:
研究与设计
Publishing date:

Info

Title:
Research on bend-twist coupling vibration of liquid rocket engine turbopump rotors
Author(s):
DOU Wei1 LIU Zhan-sheng2
1. Beijing Aerospace Propulsion Institute, Beijing 100076, China;
Keywords:
liquid rocket engineturbopumprotor systembend-twist couplingvibration
PACS:
V434-34
DOI:
-
Abstract:
A bend-twist coupling dynamics model for the liquid rocket engine turbopump rotor system was established under the effect of the sealed liquid vibration to achieve the vibration characteristics of the rotors. Through the numerical simulation and experiments, the dynamics characteristic of bend-twist coupling vibration is researched for rotors system of turbopump. A conclusion that the nonlinear characteristic of bend-twist coupling vibration is much more obvious under the sealed liquid exciting function was obtained. The effect of eccentricity on bend-twist coupling vibration of turbopump rotor system is analyzed. This research supplies the credible information for machinery design and diagnosis and mainte-nance of liquid rocket engine turbopump rotor system.

References:

[1]CHILDS D W. Dynamic analysis of turbulent annular seals based on Hirs lubrication equation[J]. ASME Journal of Lubrication Technology, 1983, 105(3): 429-436.
[2]CHILDS D W. The space shuttle main engine high-pres- sure fuel turbopump rotor dynamic instability problem [J]. ASME Journal of Engineering for Power, 1978, 100(1): 48-57.
[3]BLACK H F. Effects of hydraulic forces in annular pres- sure seals on the vibration of centrifugal pump rotors[J]. Journal of Mechanical Engineering Science, 1969, 11(2): 206-213.
[4]Ek M C. Solution of the subsynchronous whirl problem in the high pressure hydrogen turbomachinery of the space shuttle main engine[C]// AIAA/SAE 14th Joint Propulsion Conference. Las Vegas, USA: AIAA/SAE, 1978: 1-27.
[5]LIEUWEN T C. Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor[J]. Journal of Propulsion and Power, 2002, 18(1): 61-67.
[6]徐悦, 田爱梅. 基于CFD的涡轮泵转子密封流体激振研究进展[J]. 火箭推进, 2005, 31(1): 8-13.
[7]白长青, 许庆余, 张小龙. 火箭发动机液氢涡轮泵转子密封系统的非线性动力稳定性[J]. 西安交通大学学报, 2005, 39(9): 1016-1020.
[8]郑继坤, 吴建军. 氢氧火箭发动机高速氧涡轮泵转子动力学特性研究[J]. 导弹与航天运载技术, 2005, 278(5): 5-10.
[9]陈启智. 液体火箭发动机故障检测与诊断研究的若干进展[J]. 宇航学报, 2003, 24(1): 1-11.
[10]唐飞, 李家文, 陈晖, 等. 采用环形入口壳体的诱导轮汽蚀性能研究[J]. 机械工程学报, 2011 (4): 171-176.
[11]于开民, 孙时珍, 张树团. 一种基于Petri网的飞机配电系统可靠性分析方法[J]. 电子设计过程, 2010 (10): 139-141.
[12]张金容, 白东安, 汪亮, 等. 液体火箭发动机超低比转速离心泵优化设计(英文)[J]. 宇航学报, 2011 (6): 1339-1343.
[13]杨永强, 刘红军, 徐浩海, 等. 补燃循环发动机强迫起动研究[J]. 火箭推进, 2011 (2): 14-18.
[14]窦唯. 液体火箭发动机用过滤器流阻特性及试验[J]. 导弹与航天运载技术, 2011 (1): 10-13.
[15]郭维, 白东安. 液体火箭发动机用超低比转速离心泵优化设计[J]. 火箭推进, 2011 (5): 21-25.
[16]侯慧娜, 王德合. 航空通信设备检测系统跳频信号源的设计[J]. 电子设计过程, 2010 (7): 118-120.

Memo

Memo:
-
Last Update: 1900-01-01