[1]HUDSON L, STEPHENS C. The X-37 hot structure control surface testing[R]. USA: NASA 2006.
[2]BUCCHI A, BRUNO C. Transpiration cooling performance in LOX/Methane liquid-fuel rocket engines[J]. Journal of Spacecraft and Rockets, 2005, 42(3): 50-59.
[3]BUCCHI A, CONGIUNTI A, BRUNO Claudio. Investigation of transpiration cooling performance in LOX/Methane liquid rocket engines[J]. IAC, 2003 (10): 22-26.
[4]刘双, 张博明, 解维华. 可重复使用航天器金属热防护系统的结构优化进展[J]. 航天制造技术, 2007 (3): 43-48.
[5]EMRE S, WEI S. Modeling of fluid dynamics and heat transfer through porous media for liquid rocket propulsion, AIAA 2007-5549 [R]. USA: AIAA, 2007.
[6]于淼, 姜培学. 发汗冷却过程中多孔壁面内的局部非热平衡分析[J]. 工程热物理学报, 2007, 28(2): 286-288.
[7]JIANG Pei-xue, REN Ze-pei. Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model[J]. International Journal of Heat and Fluid Flow, 2001, 22(1): 102-110.
[8]高翔宇, 孙纪国. 推力室多孔面板发汗冷却试验研究[J]. 火箭推进, 2011, 37(5): 9-12.
[9]ACHENBACH E. Heat and flow characteristics of packed beds[J]. Experimental Thermal and Fluid Science, 1995, 10(1):17-27.
[10]DIXON A G, GRESSWELL D L. Theoretical prediction of effective heat transfer parameters in packed beds[J]. AICHE J., 1979, 25(4): 663-676.
[11]VAFAI K, AMIRI A. Non-Darcian effects in confined forced convective flows[J]. Numerical Heat Transfer Journal Part A, 1997, 31: 235-254.
[12]孙纪国, 王建华. 烧结多孔结构的渗透和流阻特性研究[J]. 航空动力学报, 2008, 23(1): 130-133.
[13]DUKHAN N, PATEL P. Equivalent particle diameter and length scale for pressure drop in porous metals[J]. Expe- rimental Thermal and Fluid Science, 2008, 32(5): 1059-1067.
[14]MCCARTY R. Hydrogen technology survey thermo physi- cal properties, NASA SP-3089[R]. USA: NASA, 1975.