|Table of Contents|

Investigation for initiation process of supersonic oblique detonation engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2013年03期
Page:
1-8
Research Field:
专论与综述
Publishing date:

Info

Title:
Investigation for initiation process of supersonic oblique detonation engine
Author(s):
LI Zi-ran LIN Zhi-yong HAN Xu
Inst. of Aerospace and Material Engineering, National Univ. of Defense
Keywords:
supersonic propulsion system detonation engine oblique detonation initiation process
PACS:
V235-34
DOI:
-
Abstract:
The initiation modes of the supersonic oblique detonation engine are compared and analyzed. The research progress and development status of the detonation initiation process and stabilization features are summarized. The relevant investigation methods and technologies are generalized. An assumption for experiment research on initiation process of the supersonic oblique detonation engine is proposed, that is, the advanced optical measuring technology and PLIF technology are adopted in the research.

References:

[1]LU F K. Prospects for detonations in propulsion [C]// Pro- ceedings of the 9th International Symposium on Experi- mental and Computational Aerothermodynamics of Inter- nal Flows. Gyeongju, Korea: ISAIF, 2009: 8-11.
[2]OSTRANDER M J, HYDE J C, YOUNG M F, et al. Stan- ding oblique detonation wave engine performance, AIAA 1987-2002 [R]. USA: AIAA, 1987.
[3]SISLIAN J P. Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets[J]. Journal of Propulsion and Power, 2001, 17(3): 599-604.
[4]FUSINA G, PARENT B. Stability of standing oblique de- tonation waves, AIAA2004-1125 [R]. USA: AIAA, 2004.
[5]HARRIS P G. Structure of conical oblique detonation waves[C]// 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. [S.l.]: AIAA, 2008.
[6]FUSINA G, PARENT B. Numerical study of structure and stability of oblique detonation waves [C]// 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2004:11-22.
[7]CARRIER G F. Nonintrusive stabilization of a conical detonation wave for supersonic combustion[J]. Combustion and Flame, 1995, 103(4): 281-295.
[8]LEE J H S. Initiation of gaseous detonation[J]. Annual Review of Physical Chemistry, 1977, 28: 75-104.
[9]GROSS R A. A study of supersonic combustion[J]. Journal of the Aero/Space Sciences, 1960, 27(7): 517-524.
[10]RUBINS P M. Shock-induced combus- tion with oblique shocks, comparison of experiment and kinetic calculations[J]. AIAA Journal, 1963, 1(12): 2778-2784.
[11]LEHR H F. Experiments on shock induced combustion [J]. Astron. Acta., 1972, 17(4): 589-597.
[12]CHOI J Y, JEUNG I S, YOON Y. Validation of CFD al- gorithms for unsteady shock-induced combustion, AIAA 98-3217[R]. USA: AIAA, 1998.
[13]KAMIYAMA Y. Flow features of shock-in- duced combustion around cylindrical projectiles[J]. Sym- po- sium (International) on Combustion, 2000, 28: 671-677.
[14]KANESHIGE M J, SHEPHERD J E. Oblique detonation stabilized on a hypervelocity projectile[J]. Symposium (International) on Combustion, 1996, 26(2): 3015-3022.
[15]VIGUIER C, GOURARA A, DESBORDES D. Three-di- mensional structure of stabilization of oblique detonation wave in hypersonic flow[J]. Symposium (International) on Combustion, 1998, 27: 2207-2214.
[16]VIGUIER C. Onset of oblique detonation waves: com- parison between experimental and numerical results for hydrogen-air mixtures[J]. Symposium (International) on Combustion, 1996, 26(2): 3023-3031.
[17]MORRIS C I. Combined schlieren and OH PLIF imaging study of ram accelerator flowfields, AIAA 98-0244[R]. USA: AIAA, 1998.
[18]LI C, KAILASANATH K, ORAN E. Effects of boundary layers on oblique-detonation structures, AIAA 1993-0450 [R]. USA: AIAA, 1993.
[19]PAPALEXANDRIS M V. A numerical study of wedge- induced detonations[J]. Combustion and Flame, 2000, 120 (4): 526-538.
[20]KASAHARA J, ARAL T, MATSUO A, et al. Experimen- tal investigations of steady-state oblique detonation waves generated around hypersonic projectiles, AIAA 2001-1800 [R]. USA: AIAA, 2001.
[21]GRISMER M J, POWERST J M. Calculations for steady propagation of a generic ram accelerator configuration[J]. Journal of Propulsion and Power, 1995, 11(1): 111-121.
[22]FAN H Y. Numerical study of reactive flow past a wedge in a channel, AIAA 2005-1168[R]. USA: AIAA, 2005.
[23]CHOI J Y. Unstable combus- tion induced by oblique shock waves at the non-attach- ing condition of the oblique detonation wave[J]. Pro- ceedings of the Combustion Institute, 2009, 32(2): 2387-2396.
[24]FUSINA G, SISLIAN J P, PARENT B. Computational study of formation and stability of standing oblique de- tonation waves, AIAA 2004-1125[R]. USA: AIAA, 2004.
[25]POWERS J M, STEWARTT D S. Approximate solutions for oblique detonations in the hypersonic limit[J]. AIAA Journal, 1992, 30(3): 55-66.
[26]ASHFORD S A, EMANUEL G. Wave angle for oblique detonation waves[J]. Shock Waves, 1994, 3(4): 327-329.
[27]ISHII K. Initiation and propagation of detonation waves in combustible high speed flows [J]. Proceedings of the Combustion Institute, 2009, 32: 2323-2330.
[28]LEFEBVRE M H, FUJIWARA T. Numerical modeling of combustion processes induced by a supersonic conical blunt body[J]. Combustion and Flame, 1995, 100(1-2): 85-93.
[29]STEWART D S, KASIMOV A R. State of detonation stability theory and its application to propulsion[J]. Journal of Propulsion and Power, 2006, 22(6): 1230.
[30]CHOI J Y. Capturing unstable wrinkled oblique detonation wave front by Hi-Fi numerical simulation, AIAA 2006-5100[R]. USA: AIAA, 2006.
[31]HIGGINS A J. Ram accelerators: outstanding issues and new directions[J]. Journal of Propulsion and Power, 2006, 22(6): 1170-1177.
[32]HE L. An analysis of the quenching phenomenon and low frequency instability in detonations induced by blunt projectiles, AIAA-97-0806[R]. USA: AIAA, 1997.
[33]DAIMON Y, MATSUO A, KASAHARA J. Wave struc- ture and unsteadiness of stabilized oblique detonation waves around hypersonic projectile, AIAA 2007-1171[R]. USA: AIAA, 2007.
[34]WALTER M A T, FIGUEIRA L F. Numerical study of detonation stabilization by finite length wedges[J]. AIAA Journal, 2006, 44(2): 353-361.

Memo

Memo:
-
Last Update: 1900-01-01