|Table of Contents|

Overview on numerical simulations of primary atomization(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2014年01期
Page:
10-17
Research Field:
专论与综述
Publishing date:

Info

Title:
Overview on numerical simulations of primary atomization
Author(s):
LIU Chang-bo1 ZHOU Li-xin1 LEI Fan-pei2
1. Xi’an Aerospace Propulsion Institute, Xi’an 710100, China; 2. China Aerospace Science and Technology Corporation, Beijing 100037, China
Keywords:
atomization process numerical simulation multi-scale simulation droplet tracking method
PACS:
V434-34
DOI:
-
Abstract:
There are three simulation methods for primary atomization: simplified engineering models, DNS (Direct Numerical Simulation)-like simulation and multi-scale simulations. Fundamental ideas, advantages and disadvantages, application status of the three methods are summarized thoroughly in this paper. For the multi-scale simulation method, the blobs larger than the grid volume are captured by the DNS-like method, and those droplets smaller than the grid volume are tracked by simple models. This method can capture the main characteristics of the primary atomization, and its computational cost is moderate. It has become a new research direction for the primary atomization process.

References:

[1]REITZ R D. Modeling atomization processes in high- pressure vaporizing sprays[J]. Atomization and Spray Tec- hnology, 1987, 3(4): 309-337.
[2]O'ROURKE P J, AMSDEN A A. The TAB method for numerical calculation of spray droplet breakup, SAE 872089[R]. USA: SAE, 1987.
[3]JIANG X, SIAMAS G A, JAGUS K, et al. Physical mode- ling and advanced simulations of gas-liquid two-phase jet flows in atomization and sprays[J]. Progress in Energy and Combustion Science, 2010, 36(2): 131-167.
[4]KOO J Y. An overview of liquid spray modeling formed by high-shear nozzle/swirler assembly[J]. KSME International Journal, 2003, 17(5): 726-739.
[5]HUU P T, CHEN C P. Modeling of turbulent effects on liquid jet atomization and breakup, AIAA-2005-154[R]. USA: AIAA, 2005.
[6]史春涛, 任立红, 于善颖, 等. 喷雾破碎模型在内燃机CFD中的应用[J]. 拖拉机与农用运输车, 2006, 33(3): 1-4.
[7]VILLIERS E D, GOSMAN A D, WELLER H G. Large eddy simulation of primary diesel spray atomization, SAE 2004-01-0100[R]. USA: SAE, 2004.
[8]CHANG S K, KOO J Y, CHUNG H C. Transient liquid jet breakup model and comparison with phase doppler measurements[J]. KSME International Journal, 1995, 9(1):41-50.
[9]聂万胜, 丰松江. 液体火箭发动机燃烧动力学模型与数值计算[M]. 北京: 国防工业出版社, 2011.
[10]O'ROURKE P J. Collective drop effects on vaporizing liquid sprays[D]. Princeton, New Jersey, USA: Princeton University, 1981.
[11]史春涛, 周颖, 张宝如, 等. 喷雾模型的发展及其在内燃机CFD中的应用[J]. 拖拉机与农用运输车, 2006, 33(2):39-42.
[12]周立新. 同轴离心式气液喷嘴内流场特性研究[D]. 西安: 中国航天科技集团公司第六研究院第十一研究所, 2008.
[13]OSHER S J, SETHIAN J A. Fronts propagating with curvature dependent speed: algorithms based on Hamilton Jacobi formulations[J]. Journal of Computa- tional Physics, 1988, 79(1): 12-49.
[14]MARTINEZ J M, CHENSNEAU X, ZEGHMATI B. A new curvature technique calculation for surface tension contribution in PLIC-VOF method[J]. Computational Mechanics, 2006, 37(2): 182-193.
[15]FUSTER D, BAGUE A, BOECK T, et al. Simulation of primary atomization with an octree adaptive mesh refinement and VOF method[J]. International Journal of Multiphase Flow, 2009, 35(6): 550-565.
[16]YOKOI K. Efficient implementation of THINC scheme: a simple and practical smoothed VOF algorithm[J]. Journal of Computational Physics, 2007, 226(2): 1985-2002.
[17]OLSSON E, KREISS G. A conservative Level Set method for two phase flow[J]. Journal of Computational Physics, 2005, 210(1): 225-246.
[18]DESJARDINS O, MOUREAU V, PITSCH H. An accurate conservative Level Set/Ghost Fluid method for simulating turbulent atomization[J]. Journal of Computational Physics, 2008, 227(18): 8395-8416.
[19]M?魪NARD T, TANGUY S, BERLEMONT A. Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet[J]. International Journal of Multiphase Flow, 2007, 33(5): 510-524.
[20]LEBAS R, MENARD T, BEAU P A, et al. Numerical simulation of primary break-up and atomization: DNS and modeling study[J]. International Journal of Multip- hase Flow, 2009, 35(3): 247-260.
[21]SHINJO J, UMEMURA A. Simulation of liquid jet pri- mary breakup: dynamics of ligament and droplet forma- tion[J]. International Journal of Multiphase Flow, 2010, 36(7): 513-532.
[22]SHINJO J, UMEMURA A. Detailed simulation of primary atomization mechanisms in diesel jet sprays (isolated identification of liquid jet tip effects) [C]// Proceedings of the Combustion Institute. [S.l.]: Elsevier Inc., 2011, 33: 2089-2097.
[23]沃傲波. 柴油机喷雾准直接数值模拟及其雾化机理的研究[D]. 武汉: 华中科技大学, 2007.
[24]ISHIMOTO J, OHIRA K, OKABAYASHI K, et al. Inte- grated numerical prediction of atomization process of liquid hydrogen jet[J]. Cryogenics, 2008, 48(5/6): 238- 247.
[25]GROSSHANS H, SZ?魣SZ R Z, FUCHS L. Full spray si- mulation-coupled volume of fluid and Lagrangian parti- cle tracking methods[C]// Proceedings of 24th European Con- ference on Liquid Atomization and Spray Systems. Esto- ril, Portugal:[s.n.], 2011: 111-121.
[26]KIM D, HERRMAN M, MOIN P. The breakup of a round liquid jet by a coaxial flow of gas using the refined Lev- el Set grid method[C]//Proceedings of 59th Annual Meeting of the APS divisions of Fluid Dynamics. Tampa Bay, FL, USA: University of Florida, 2006: 19-21.
[27]HERRMANN M. A parallel Eulerian interface tracking/Lagrangian point particle multiscale coupling procedure [J]. Journal of Computational Physics, 2010, 229(3): 745-759.
[28]TOMAR G, FUSTER D, ZALESKI S, et al. Multiscale simulations of primary atomization[J]. Computers & Fluids, 2010, 36(10): 1864-1874.
[29]MA D J, CHEN X D, KHARE P, et al. Atomization pat- terns and breakup characteristics of liquid sheets formed by two impinging jets, AIAA-2011-97[R]. USA: AIAA, 2011.
[30]LIU C B, ZHOU L X, LEI F P. A new multiscale method of primary atomization[C]// Proceedings of The 5th CSA- IAA Conference on Advanced Space Technology. Shanghai, China: CSA-IAA, 2013: 21-23.
[31]VALLIER A, REVSTEDT J, NILSSON H. Procedure for the break-up of cavitation sheet[C]// Proceedings of 4th International Meeting on Cavitation and Dynamic Prob- lems in Hydraulic Machinery and Systems. Belgrade, Serbia: [s.n.], 2011: 77-85.
[32]LI X Y, ARIENTI M, MARIOS C S. Towards an efficient, high-fidelity methodology for liquid jet atomization com- putations, AIAA-2010-210[R]. USA: AIAA, 2010.
[33]LI X Y, MARIOS C S. Prediction of high density-ratio liquid jet atomization in crossflow using high fidelity simulations on HPC, AIAA-2012-0175[R]. USA: AIAA, 2012.

Memo

Memo:
-
Last Update: 1900-01-01