|Table of Contents|

esearch on plume flow of space thrusters(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2014年06期
Page:
46-50
Research Field:
研究与设计
Publishing date:

Info

Title:
esearch on plume flow of space thrusters
Author(s):
GUO Jing KONG Fan-chao HU Xu-kun
Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
Keywords:
-
PACS:
V439-34
DOI:
-
Abstract:
The necessity of plume flow research of space thrusters is introduced. At the same time, plume test and numerical simulation methods which are the two valid ways to research space engine's plume characters are elaborated. Then the key technique and development of plume test are summarized. Afterwards, the compositions, vacuum pumping methods, main specifications and characteristics of representative plume test beds including J2-A chamber and CHAFF-IV facility of USA, CCG chamber and STG chamber of European, KM space simulators and PES chamber of China are summarized. Finally, development of the numerical simulation technology related to plume test on ground is introduced by overviewing numerical models of plume, focusing on DSMC method and its software, presenting plume computational methods of high density plume and electrical propulsion thruster plume. The technology of test and numerical simulation of space thruster plume is helpful to research the plume of space

References:

[1]HUFENBACH B, DETTLEFF G, BOETTCHER R D, et al. European activities in plume testing, AIAA 97-33[R]. USA: AIAA, 1997.
[2]程晓丽, 李明智, 毛铭芳, 等. 高空羽流场的DSMC计算和试验研究[J]. 空气动力学学报, 2002, 20(1), 9-14.
[3]陈琳英, 宋仁旺. 离子推力器羽流特性及其污染分析[J]. 上海航天, 2005 (4): 36-40.
[4]范周琴. 电推进发动机羽流流场DSMC/PIC混合算法研究[D]. 长沙: 国防科学大学, 2006.
[5]李殿东. 76 km高空环境模拟试验舱的研制[J]. 真空, 2002, 39(5): 41-45.
[6]黄本诚. KM6载人航天器空间环境试验设备[J]. 中国空间科学与技术, 2002, 22(3): 1-6.
[7]郭霄峰. 液体火箭发动机试验[M]. 北京: 中国宇航出版社, 2005.
[8]ANDREW D K. An overview of ground based spacecraft thruster interaction studies: facility design issues, AIAA 00-0463[R]. USA: AIAA, 2000.
[9]DETTLEFF G, KLAUS P. Initial experimental results from the new DLR-high vacuum plume test facility STG, AIAA 93-3297[R]. USA: AIAA, 1997.
[10]GEORG D, KLAUS P. Initial experimental results from the new DLR-High vaccum plume test facility STG, AIAA 97-3297[R]. USA: AIAA, 1997.
[11]张建华, 贺碧蛟, 蔡国飙, 等. 卫星姿控发动机喷管羽流撞击效应试验[J]. 空气动力学学报, 2007, 25(2): 250- 255.
[12]肖泽娟, 程惠尔, 周伟敏, 等. 空间发动机羽流场的试验研究[J]. 空气动力学学报, 2008, 26(4): 480-485.
[13]王文龙, 周建平, 蔡国飙, 等. 羽流效应地面模拟试验系统关键技术发展[J]. 航空动力学报, 2012, 27(4): 900- 906.
[14]HILL J A F, DRAPER J S. Analytical approximation for the flow from a nozzle into a vacuum[J]. Journal of Space- craft and Rocket, 1966, (3): 1552-1554.
[15]SIMONS G A. Effect of nozzle boundary layers on rocket exhaust plumes[J]. AIAA Journal, 1972, 10(11): 1534- 1535.
[16]HOFFMANN R J, KAWASAKI A, TRINKS H, et al. The CONTAM 3.2 plume flow field analysis and contamination prediction computer program: analysis model and experimental verification, AIAA 85-0928[R]. USA: AIAA, 1985.
[17]COOPER B P J. Computational scheme for calculating the plume backflow region[J]. Journal of Spacecraft, 1979, 16(4): 284-286.
[18]JENINS R M, CIUCCI A, COCHRAN J E J. Simplified model for calculation of backflow contamination from rocket exhausts in vacuum[J]. Journal of Spacecraft and Rockets, 1994, 31(2): 265-270.
[19]BIRD G A. Direct simulation of the Boltzmann equation [J]. Physics of Fluids, 1970,13(11): 2676-2679.
[20]BIRD G A. Breakdown of continuum flow in free jets and rocket plumes[C]// 12th International Symposium on Rarefied Gas Dynamics. [S.l.]: [s.n.], 1980: 681-694.
[21]DOO Y C, NELSON D A. Direct Monte Carlo simulation of small bipropellant engine plumes, ADA177079 [R]. USA: ADA, 1987.
[22]FURLANI T R, LORDI J A. Implementation of the direct simulation Monte Carlo method for an exhaust plume flow field in a parallel computing environment, AIAA 88-2736[R]. USA: AIAA, 1988.
[23]GIMELSHEIN S F, BOYD I D, IVANOV M S. Mode- ling of internal energy transfer in plume flows of polyatomic, AIAA 99-0738[R]. USA: AIAA, 1999.
[24]GALLIS M A,TORCZYNSKI J R,RADER D J. An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte Carlo method[J]. Physics of Fluids, 2001, 13(11): 3482- 3492.
[25]BURT J M, BOYD I D. Development of a two-way coupled model for two-phase rarefied flows, AIAA 04-1351[R]. USA: AIAA, 2004.
[26]WILMOTH R G, CARLSON A B, LEBEAU G J. DSMC grid methodologies for computing low-density, hyperso- nic flows about reusable launch vehicles, AIAA 96-1812[R]. USA: AIAA, 1996.
[27]BOYLES K A, LEBEAU G J, LUMPKIN III F E. The use of virtual subcells in DSMC analysis of orbiter aerodynamics at high altitudes upon reentry, AIAA 03-1030[R]. USA: AIAA, 2003.
[28]LEBEAU G J, BOYLES K A, LUMPKIN III F E. Virtual sub-cells for the direct simulation Monte Carlo method, AIAA 03-1031[R]. USA: AIAA, 2003.
[29]IVANOV M S, MARKELOVF G N, GIMELSHEIN S F. Statistical simulation of reactive rarefied flows: numerical approach and applications, AIAA 98-2669[R]. USA: AIAA, 1998.
[30]DIETRICH S, BOYD I D. A scalar optimized parallel implementation of the DSMC method, AIAA 94-355[R]. USA: AIAA, 1994.
[31]DIETRICH S, BOYD I D. Parallel implement at ion on the IBM SP-2 of the direct simulation Monte Carlo method, AIAA 95-2029[R]. USA: AIAA, 1995.
[32]GIORDANO D, IVANOV M, KASHKOVSKY A, et al. Application of DSMC to the study of satellite thruster plumes, AIAA 97-2538[R]. USA: AIAA, 1997.
[33]GATSONIS N A, NANSON A R, LEBEAU G J. Navier- Stokes/DSMC Simulations of cold-Gas nozzle/plume flows and flight data comparisons, AIAA 99-3456[R]. USA: AIAA, 1999.
[34]GEORGE J D. A combined CFD-DSMC method for numerical simulation of nozzle plume flows[D]. USA: Cornell University, 2000.
[35]钱中, 王平阳, 杜朝辉. 稀薄等离子体羽流稳态流动粒子模拟[J]. 上海交通大学学报, 2009, 43(2): 165-168.
[36]尹乐, 周进, 杨乐, 等. 脉冲等离子体推力器羽流的粒子模拟[J]. 国防科技大学学报, 2008, 30(6): 6-9.
[37]GATSONIS N, ZWAHLEN J, WHEELOCK A, et al. Pulsed plasma thruster plume investigation using a current-mode quadruple probe method[J]. Journal of Propulsion and Power, 2004, 20(2): 243-248.

Memo

Memo:
-
Last Update: 1900-01-01